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Methods of 3D object model creation on the basis of unstructured (sparse) cloud of points are considered in the paper. The issues 

of combining point cloud compaction methods and subsequent surface generation are described. The comparative analysis of generation 
surfaces algorithms for the purpose of revealing of more effective method using as input data the depth maps received from the sparse 
cloud of points is carried out. The comparison is made by qualitative, quantitative and temporal criteria. The optimal method of 3D 
object model creation on the basis of unstructured (sparse) cloud of points and depth map data is chosen. The mathematical description 
of the point cloud compaction method on the basis of stereo-matching with application of two-phase algorithm of species search and 
depth map extraction from Multi-View Stereo for Community Photo Collections source image set is provided. The implementation of the 
method in open-source software Regard3D is realized in practice. 
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1. Introduction 
Today, the development of computing and surface 

restoration technologies allows to recreate 3D models of 
objects with high accuracy and high quality. One of such 
technologies is laser scanning. With the help of laser 
scanners, it is possible to get the geometry of high 
accuracy, but unfortunately the devices that allow to 
achieve accuracy in hundredths of millimeters cost tens 
and hundreds of millions of rubles. One of the types of 
non-contact scanning of objects is photogrammetry. The 
cost of equipment for obtaining geometric data about an 
object is hundreds of times lower than the equipment that 
uses laser technology, and the main load for obtaining 
high-quality models falls on the software. 

3D objects models are widely used in the field of 
parametric architecture [1], the industry of computer video 
games and animation [2], in the development of scenes for 
VR applications, as well as in mobile development [3]. 
The quality of the model plays an important role in any of 
these areas. It is important to distribute computational 
resources of software correctly. 

There are quite a lot of various software on the market 
for processing images and obtaining 3D models by series 
of images. There are both paid software, costing about one 
hundred thousand rubles, and free open source software. 
In both cases, different algorithms are used at all stages 
from photo processing to obtaining a 3D model. 

2. SfM Principles 
One of the photogrammetry methods is the one of 

building a 3D structure by a set of images - Structure from 
Motion. The method feature is automatic determination of 
camera internal parameters [4]. This method restores such 
camera parameters as the extrinsic calibration (the 
orientation and position of the camera) and the intrinsic 
calibration (focal length, radial distortion of the lens). 

The first step of SfM realization is to detect and match 
point features in the input images. Special points (term 
vary in different sources) - to put it informally - "well 
detectable" fragments of an image. These are points 
(pixels) with a characteristic (special) neighborhood - i.e. 
different from all neighboring points. Local features 
examples can be corner tops, isolated point features, 

contours, etc. The keypoints are described by descriptors - 
vectors of features computed on the basis of 
intensity/gradients or other characteristics of the 
neighborhood points. 

The most popular feature descriptors used in modern 
image processing systems are given in [5]. A-KAZE 
(nonlinear diffusion filtering for detecting and describing 
2D objects) is used to solve the problem of keypoint 
detection. 

Then the camera position is assessed and a cloud of 
low density points or sparse points is selected. Keypoints 
in multiple images are matched using approximate nearest 
neighbor and ‘tracks’, linking specific keypoints in a set of 
pictures. Tracks comprising a minimum of two keypoints 
and three images are used for point-cloud reconstruction, 
with those which fail to meet these criteria being 
automatically discarded [6]. After that triangulation is 
used to estimate points three-dimensional positions and 
gradual reconstruction scene geometry fixed into a relative 
coordinate system. 

An enhanced density point-cloud can be derived by 
implementing the Multi-View Stereo (MVS) algorithm 
[7], based on depth maps, the Clustering Views for Multi-
View Stereo (CMVS) [8], the Patch-based MVS algorithm 
(PMVS2) [9], the Shadow-Aware Multi-View Stereo 
Algorithm (SMVS) [10], that combines stereo and shape-
from-shading energies into a single optimization scheme. 
The camera positions obtained from a sparse point cloud 
are used here as input data. The result of this additional 
processing is a significant increase in point density. 

The color and texture information is then transferred to 
a point cloud, after which the final 3D model is rendered. 

Simplified process of obtaining 3D-model based on the 
images is shown in Fig. 1. 

A stage of reception of surface generation on the basis 
of the received unstructured cloud of points by a 3D-
reconstruction method MVS (Multi-View Stereo) are 
considered separately [7]. 

MVS is based on reconstructing a depth map for each 
view (image). Despite the large redundancy of the output 
data, the method has proven to be well suited for restoring 
the detailed geometry of sufficiently large scenes. Another 
advantage of depth maps as an intermediate representation 
is that the geometry is parameterized in its natural domain, 
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and per-view data (such as color) is directly available from 
the images. The excessive redundancy in the depth maps 
can cause problems; not so significant in terms of storage, 
but in terms of computational power [11]. 

MVS includes 3 stages: 

˗ SfM, which reconstructs the parameters of the 
cameras; 

˗ MVS for establishing dense; 
˗ surface generation (meshing), which merges the MVS 

geometry into a globally consistent, colored mesh. 
 

 
Fig. 1. Simplified process of obtaining a 3D model based on a set of images 

 

3. Point Cloud Compression 
In accordance with Fig. 1, once the camera parameters 

are known, dense geometry reconstruction is performed by 
Multi-View Stereo for Community Photo Collections 
(MVSCPC) [12], that reconstructs depth maps for each 
image. The depth map represents the two-dimensional 
one-channel image containing the information about 
distance from a sensor plane to scene objects [13]. 

The method is based on the idea of selecting images 
from the collection so that they match both per-view and 
per-pixel level. Appropriate choice of views ensures 
reliable matches even with strong differences in images. 
The stereo matching algorithm takes as input sparse 3D 
points reconstructed from SfM and iteratively grows 
surfaces from these points. Optimizing for surface norms 
with a photoconsistency measure significantly improves 
the matching results. The depth map quality is also 
assessed. 

Stereo matching is performed at each pixel by 
optimizing for both depth and normal, starting from an 
initial estimate provided by a sparse point cloud. During 
stereo optimization, poorly matching views can be 
discarded and new ones added according to the local view 
selection criteria. The detour Pixels can be revised and 
their depth updated if a more accurate match is found [11]. 

MVSCPC provides depth map assessment for each 
input image - each image serves as a reference view only 
once, after which a two-level view selection algorithm is 
implemented. At the image level, global view selection 
determines for each reference view a set of good neighbor 
images to use for stereo matching. 

Global view. For each reference view R, global view 
selection seeks a set N of neighboring views that are good 
candidates for stereo matching in terms of scene content, 
appearance, and scale. In addition, the neighboring views 
should provide sufficient parallax (a change in the 
apparent position of an object relative to a distant 
background, depending on the position of the observer) 
with respect to R and each other in order to enable a stable 
match. Here we describe a scoring function designed to 
measure the quality of each candidate neighboring view 
based on these desiderata. 

Since matches and sparse point cloud extracted in the 
SfM phase are not sufficient indicators for accurate surface 
reconstruction (as they are extracted based on the 
similarity of only the scene content), another assessment 
of image matches reliability was proposed. 

A global score 𝑔𝑔𝑅𝑅 for each view 𝑉𝑉 within a candidate 
neighborhood 𝑁𝑁 (which includes 𝑅𝑅) as a weighted sum 
over features shared with 𝑅𝑅 is computed as: 

𝑔𝑔𝑅𝑅(𝑉𝑉) =  � 𝑤𝑤𝑁𝑁(𝑓𝑓) ∙ 𝑤𝑤𝑠𝑠(𝑓𝑓)
𝑓𝑓∈𝐹𝐹𝑉𝑉∩𝐹𝐹𝑅𝑅

 (1) 

where 𝐹𝐹𝑥𝑥 is the set of feature points observed in view 𝑋𝑋, 
and the weight functions are described below. 

To encourage a good range of parallax within a 
neighborhood, the weight function 𝑤𝑤𝑁𝑁(𝑓𝑓) is defined as a 
product over all pairs of views in 𝑁𝑁: 

𝑤𝑤𝑁𝑁(𝑓𝑓) =  � 𝑤𝑤𝛼𝛼(𝑓𝑓,𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗)
𝑉𝑉𝑖𝑖,𝑉𝑉𝑗𝑗∈𝑁𝑁

  

𝑖𝑖 ≠ 𝑗𝑗, 𝑓𝑓 ∈ 𝐹𝐹𝑉𝑉𝑖𝑖 ∩ 𝐹𝐹𝑉𝑉𝑗𝑗  
(2) 

where 𝑤𝑤𝛼𝛼�𝑓𝑓,𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗� = min(�𝛼𝛼 𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥� �2, 1) and 𝛼𝛼 is the 
angle between the lines of sight from 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 to 𝑓𝑓. 



 

The function 𝑤𝑤𝛼𝛼�𝑓𝑓,𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑗𝑗� downweights triangulation 
angles below 𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥, which is usuall set to 10 degrees. The 
quadratic weight function serves to counteract the trend of 
greater numbers of features in common with decreasing 
angle. 

The weighting function 𝑤𝑤𝑠𝑠(𝑓𝑓) measures similarity in 
resolution of images 𝑅𝑅 and 𝑉𝑉 at feature 𝑓𝑓. The diameter 
𝑠𝑠𝑉𝑉(𝑓𝑓) of a sphere centered at 𝑓𝑓 whose projected diameter 
in 𝑉𝑉 equals the pixel spacing in 𝑉𝑉 is computed to estimate 
the 3D sampling rate of 𝑉𝑉 in the vicinity of the feature 𝑓𝑓. 

Similarly, 𝑠𝑠𝑅𝑅(𝑓𝑓) is calculated for 𝑅𝑅 and the scale 
weight 𝑤𝑤𝑠𝑠 is defined based on the ratio 𝑟𝑟 = 𝑠𝑠𝑅𝑅(𝑓𝑓)

𝑠𝑠𝑉𝑉(𝑓𝑓)�  
using 

𝑤𝑤𝑠𝑠(𝑓𝑓) =  �
2 𝑟𝑟� , 2 ≤ 𝑟𝑟

1,1 ≤ 𝑟𝑟 < 2
𝑟𝑟, 𝑟𝑟 < 1

 (3) 

This weight function prefers views with equal or 
higher resolution than a reference view. Having defined a 
global estimate of species 𝑉𝑉 and neighbors 𝑁𝑁, one can find 
the best 𝑁𝑁 of a given size (usually |𝑁𝑁| = 10) by the sum 
of species estimates ∑ 𝑔𝑔𝑅𝑅(𝑣𝑣)𝑉𝑉∈𝑁𝑁 . For efficiency, a "greedy 
algorithm" [14] is used and grow the neighborhood 
incrementally by iterative adding to 𝑁𝑁 the highest scoring 
view, taking into account the current 𝑁𝑁 (which initially 
contains only 𝑅𝑅). 

Rescaling Views. Although global view selection 
algorithm tries to select neighboring views with 
compatible scale, some inconsistencies in scale are 
unavoidable due to differences in resolution within the 
collection of photos, which may negatively affect stereo 
matching. There are methods to adapt the scale of all views 
by filtering to a common, narrow range or global, pixel-
based view. The first method is used in this research to 
avoid resizing of the matching window in different areas 
of the depth map. This approach finds a view with the 
lowest-resolution 𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 ∈ 𝑁𝑁 relative to 𝑅𝑅, resamples 𝑅𝑅 to 
approximately match that lower resolution, and then 
resamples higher resolution to match 𝑅𝑅. 

In particular, the assessment the resolution scale of a 
view 𝑉𝑉 relative 𝑅𝑅 is based on their common features 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅(𝑉𝑉) =  
1

|𝐹𝐹𝑉𝑉 ∩ 𝐹𝐹𝑅𝑅|  �
𝑠𝑠𝑅𝑅(𝑓𝑓)
𝑠𝑠𝑉𝑉(𝑓𝑓)

𝑓𝑓∈𝐹𝐹𝑉𝑉∩𝐹𝐹𝑅𝑅

 (4) 

Then 𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 simply equals 𝑠𝑠𝑟𝑟𝑔𝑔 𝑠𝑠𝑟𝑟𝑔𝑔 𝑚𝑚𝑖𝑖𝑚𝑚 𝑉𝑉∈𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅(𝑉𝑉). 
If 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅(𝑉𝑉) is less than the threshold value 𝑡𝑡 (𝑡𝑡 = 1, 
which is close to the 5x5 of the reference window on a 3x3 
window in the neighboring view with the lowest relative 
scale), the reference view is rescaled so that, after rescaling 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅(𝑉𝑉) = 𝑡𝑡. Then all neighboring views with 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅(𝑉𝑉) > 2 to match the scale of the reference view 
(which itself may have been changed in the previous step). 
It is important that all modified versions of the images are 
discarded when moving to the depth map computation for 
the next reference view. 

Local View. Global view selection determines a set of 
𝑁𝑁 well suited candidates for a reference view and matches 
their scale. Instead of using all of these views for stereo 
matching at a specific location in the reference view, the 
smallest set 𝐴𝐴 ⊂ 𝑁𝑁 of active views is selected (usually 
|𝐴𝐴| = 4). Using this subset naturally speeds up the 
computation of the depth map. 

During stereo matching, 𝐴𝐴 is iteratively updated using 
a set of local view selection criteria designed to select 
views that, given a current depth and normal pixel 
estimates, are photometrically consistent and provide a 
sufficiently wide range of observation directions. To 
measure the photometric consistency, the mean-removed 
normalized cross correlation (NCC) between pixels within 
a window about the given pixel in 𝑅𝑅 and the corresponding 
window in V is used. If the NCC score is above a fixed 
threshold, then 𝑉𝑉 is a candidate for addition to 𝐴𝐴. 

You can measure the angular distribution by looking at 
gaps of directions from which the given scene point (based 
on the current depth estimation for the reference pixel) is 
observed. In practice, the angular spread of the epipolar 
line [15] is considered instead, obtained by projecting each 
viewing ray passing through the reference point to the 
reference view. When deciding whether to add view 𝑉𝑉 to 
the active set 𝐴𝐴, the local score is calculated as 

𝑠𝑠𝑅𝑅(𝑉𝑉) =  𝑔𝑔𝑅𝑅(𝑉𝑉) ⋅ � 𝑤𝑤𝑒𝑒(𝑉𝑉,𝑉𝑉′)
𝑉𝑉′∈𝐴𝐴

 (5) 

where 𝑤𝑤𝑒𝑒(𝑉𝑉,𝑉𝑉′) = min (𝛾𝛾 𝛾𝛾𝑚𝑚𝑚𝑚𝑥𝑥� , 1) and 𝛾𝛾 is the acute 
angle between the pair of epipolar lines in the reference 
view as described above. Accept 𝛾𝛾𝑚𝑚𝑚𝑚𝑥𝑥=10 degrees. 

Then the local view selection algorithm is performed 
in the following way. Taking the initial depth of the pixel, 
the view 𝑉𝑉 with the highest 𝑠𝑠𝑅𝑅(𝑉𝑉) value is found. If this 
view has a sufficiently high NCC score (threshold 5 is 
used), it is added to 𝐴𝐴; otherwise, the view is rejected. The 
process is repeated until either set 𝐴𝐴 reaches the desired 
size or the view remains undecided. During stereo 
matching, the depth (and normal) are optimized, and a 
view may be removed (and marked as rejected). Then a 
replaced view is added. The algorithm completes as the 
deflected views are never revised. 

4. Surface Generation 

After computing arrays containing the best matching 
candidates for each image, you can move towards the step 
of surface generation. Merging the individual depth maps 
into a single polygonal surface is a labor intensive task. 
The depth maps inherit information about the multi-scale 
properties of the original images, which leads to vastly 
different sampling rates of the research surfaces. 

Many approaches for depth maps fusion have been 
proposed [16-20]. Among them FSSR (Floating Scale 
Surface Reconstruction) [18] and SPSR (Screened Poisson 
Surface Reconstruction) [19] were considered as methods 
of surface generation, as they provide high detail of the 
reconstructed 3D model. 

FSSR is widely used as outdoor scene reconstruction, 
when data is too sparse for a reliable reconstruction. In this 
case the method does not hallucinate geometry in 
incomplete regions, requiring manual intervention, but 
leaves in these areas holes (i.e. these areas have gaps). 

The approach draws upon a simple yet efficient 
mathematical formulation to construct an implicit function 
as the sum of compactly supported basis functions. The 
implicit function has spatially continuous “floating” scale 
and can be readily evaluated without any preprocessing. 
The final surface is extracted as the zero-level set of the 
implicit function. One of the key properties of the 



 

approach is that it is virtually parameter-free even for 
complex, mixed-scale datasets [18]. 

The FSSR method combines all depth maps in one 
large point cloud. At this stage, the scale value is attached 
to each point, indicating the factual size of the surface area 
in which the point was measured. This value is derived 
from the size of the regions identified in the MVS phase. 
Then FSSR tools calculate a multi-scale 3D surface. 

SPSR is an improvement of the approach that 
considers surface reconstruction as a spatial Poisson 
problem [20]. The approach explicitly incorporates the 
point as interpolation constraints. Unlike other methods of 
image processing and geometry processing, the term 
screening is defined for a sparse set of points rather than 
for the whole area. These rare constraints, however, can be 
effectively integrated. Since the modified linear system 

retains the same finite-element discretization, the sparse 
structure is unchanged and the system can still be resolved 
using a multi-mesh approach. 

In addition, Poisson's surface reconstruction presents 
several algorithmic improvements that together reduce the 
time complexity of the solution to linear in the number of 
points, thus enabling faster and better surface 
reconstruction [19]. 

5. Algorithm Comparison 

Consider a combination of MVS-FSSR and MVS-
SPSR approaches here in more detail. 

Implementation is studied on the example of 21 photos 
of the statuette (Fig. 2) and freely distributed software 
Regard3D and MeshLab. 

 

 
Fig. 2. Set of original photos 

 
In Fig. 3. shows the detection of keypoints by 

Regard3D. This image contains 14,486 keypoints. 
These key points are then matched to establish sparse 

matches between images (Fig. 4). The image features 

require the invariance to the image scaling, rotation, noise 
and changes in illumination. 

 
Fig. 3. Object keypoints 

 

 
Fig. 4. The result of key point comparison for a pair of original images 



 

The results of the pairing are then combined and 
unfolded into multiple views, creating functional tracks. 

The next step in SfM implementation is incremental 
triangulation algorithm. It assesses the relative position of 
a well-matched original pair of the image, and then all 
tracks visible in both images are triangulated. The 
matching next images are incrementally added to the 

reconstruction until all the reconstructed views become 
part of the scene. Parameters of lens distortion are 
evaluated during the reconstruction. The performance of 
the following algorithms is significantly improved by 
removing distortions from the original images. 

In Regard3D's "ideology", this method is called New 
Incremental. The result is a sparse point cloud (Fig. 5). 

 

 
Fig. 5. The result of triangulated point cloud computing using the New Incremental method 

 
21 cameras (according to the number of uploaded 

images) have been calibrated by the program, i.e. 3D 
positions and parameters of all images have been found. 
13 583 points has received that match not only the model, 
but also some part of the environment. The calculation 
time of a point cloud has made slightly less than 30 s. 

Further we will proceed to compression of the sparse 
point cloud by MVS method. The result of point 

compaction using the MVS method is shown in the figure. 
6. The computation time was 40.42 minutes; 4 756 185 
points were created. As you can see, the point cloud has 
holes on the side of the figure (Fig. 6). 

The corresponding depth map was obtained using the 
MeshLab program (Fig.7). 

 

 
Fig. 6. Dense point cloud using MVS method 

 

 
Fig. 7. Depth map 

 



 

Surface generation by FSSR and SPSR. In Fig. 8. the 
results of calculations in the Regard3D command line are 
presented, illustrating the iterative algorithm of finding the 
best candidates for comparison described above. 

 

 
Fig. 8. Regard3D command line. FSSR implementation 
 
In general, 21 reports were produced - according to the 

number of uploaded images. You can find the views 
recommended for comparison view, as well as the number 
of optimized points, i.e. points that have updated the depth 
map data and normal in accordance with the described 
algorithm. 

Fig. 9 shows the result of FSSR method surface 
construction. The calculation time was 17.02 min. The 
final surface contains 1,369,758 points. The model also 
contains small noises and has gaps. 

In the right picture, you can see that the model has a 
big hole. This is due to the fact that a shadow falls on this 
area in the original images. The lighting change is 
interpreted by the program as a lack of data for point 
reconstruction, because the shaded area is found in only 2-
3 species out of 21, which was a rejection of its revision 
and surface reconstruction. 

Fig. 10 shows the result of surface reconstruction using 
the SPSR method. The calculation time was 1.22 min. The 
final surface contains 301,497 points. The model also 
contains little noise and has gaps. 

In the right picture, you can see that the model has an 
even greater gap than the previous method. 

We will compare the obtained models by several 
indicators (Table 1). 

 
Fig. 9. MVS model - Floating Scale Surface Reconstruction 

 

 
Fig. 10. MVS model - Screened Poisson Surface Reconstruction 

 
Table 1. Comparison of final models. 

 FSSR SPSR 
Visual assessment of details Denser mesh with lower gap area Less dense grid with larger gap area 

Calculation time 17,02 min 1,22 min 
Number of points 1 369 758 301 497 

Model size.obj 401 Mb 85,1 Mb 
 



 

6. Conclusion 
Two surface generation algorithms were considered 

during the research: Screened Poisson Surface 
Reconstruction point approach and Floating Scale Surface 
Reconstruction approach. In connection with the method 
of point compression, the considered algorithms showed 
different temporal and quantitative results. The result of 
comparison of final 3D-models generated by these 
methods is shown, reduction of time expenses in SPSR 
method does not give qualitative result. Model MVS - 
Screened Poisson Surface Reconstruction is a much less 
dense mesh than model MVS - Floating Scale Surface 
Reconstruction. On the basis of the received data it is 
possible to draw a conclusion that for reception of 
qualitative 3D-models on the basis of not structured point 
cloud it is necessary to use the algorithm of generation of 
the surface based on changing scale of images. The surface 
generation algorithm based on a point approach can be 
used for small collections of photos that do not contain 
multiscale images. Reduction of computational power in 
model preparation, as well as their small volume can be 
used, for example, for low-polygonal modeling in the 
mobile applications. 

In the future, it is planned to conduct a comparative 
analysis of existing algorithms based on depth map data, 
as well as approaches that take into account changes in 
illumination in photographs. 
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