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In the context of this article, a method for detecting threats based on their forecasting and development in complex distributed 

systems is proposed. Initially, the relevance of the research topic is substantiated from the point of view of the prospective use of various 
methods in the framework of threat management and their forecasting in complex distributed systems. Based on the analysis of these 
methods, a proprietary forecasting method based on the second generation recurrent neural network (RNN) was proposed. The 
mathematical formulation of the problem is presented, as well as the structure of this neural network and its mathematical model of self-
learning, which allows achieving more accurate (with less error) results in the framework of threat prediction (in this case, the level of 
water rise at gauging stations) in complex distributed systems. An analysis was also made of the effectiveness of the existing and proposed 
forecasting methods, which showed the stability of the neural network in relation to other forecasting methods: the error of the neural 
network is 3-20% of actual (real) water levels; the least squares method reaches up to 34.5%, the numerical method in a generalized 
form - up to 36%; linear regression model – up to 47.5%. Thus, the neural network allows a fairly stable forecast of the flood situation 
over several days, which allows special services to carry out flood control measures. 
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1. Introduction 
Currently, complex distributed systems include 

various components in the form of physical, biological and 
digital systems [1]. In the framework of this article, 
complex distributed systems are understood to mean 
technical objects, for example, potentially dangerous 
objects, oil pipelines, since technical objects located in a 
certain area, as defined in the literature (Reimers N.F. 
Nature Management, 1990; Mikhailov N.I. Physical-
geographical zoning, 1985, etc.) - belong to the class of 
complex unique geotechnical objects and have all the 
features of complex systems. For such systems, as a rule, 
there is a danger in the form of external threats that 
contribute to causing substantial material damage. For 
example, in the Republic of Bashkortostan, such a threat 
is spring flood, which threatens complex distributed 
systems due to possible flooding and flooding. To counter 
such threats, it is proposed to proactively predict the level 
of water rise in order to plan further activities by 
specialized services to prevent the negative impact of the 
flood on complex distributed systems falling into its 
distribution zone. 

Many scientists (both domestic and foreign) are 
involved in this problem in a wide variety of scientific 
fields. To solve this problem, many approaches and 
methods are used, such as numerical methods, regression 
models, etc. [2, 4-23]. But due to the lack of works 
containing a description of the method of early detection 
of threats based on their early forecasting, it becomes 
relevant to use neural network approaches and 
technologies to solve this problem. 

Thus, it seems important and necessary, using a 
recurrent neural network, to develop a method for early 
detection of threats on the basis of predicting the level of 
water rise in the flood period to counter them in complex 
distributed systems. This will give the necessary 
specialized services some time to carry out flood control 
measures. 

2. Existing solutions  
Currently, the literature describes many methods for 

predicting flood situations (including water levels), the 
most used of which, with the exception of hydrological 
ones, are as follows: 
− least squares method; 
− numerical methods; 
− general regression models. 

The main objective of these approaches is to use 
mathematical methods and models capable of producing 
fairly accurate short-term forecasting of water levels. 

Least square method 

It is a way to solve various mathematical problems and 
is based on minimizing the sum of the squared deviations 
between the original and calculated values. The main 
working formula for forecasting: 

𝑌𝑌𝑡𝑡+1 = (𝑥𝑥 + 𝑏𝑏) ⋅ 𝑎𝑎,                               (1) 
where 𝑌𝑌𝑡𝑡+1 is the predicted indicator, t+1 is the period for 
which the forecast is made, a and b are the coefficients of 
forecast indicators and period, x is the symbol of time. 
Calculation of coefficient a: 

𝑎𝑎 = (∑ ((𝑌𝑌𝑡𝑡
𝑛𝑛
𝑖𝑖=1 ⋅𝑥𝑥)⋅𝑛𝑛1))−(∑ 𝑥𝑥⋅𝑛𝑛

𝑖𝑖=1 ∑ 𝑌𝑌𝑡𝑡)𝑛𝑛
𝑖𝑖=1

∑ 𝑥𝑥2−(∑ 𝑥𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

,                   (2) 

where 𝑌𝑌𝑡𝑡 is the actual value of the time series, n1 is the 
number of levels in the time series. The coefficient b is 
calculated by the following formula: 

𝑏𝑏 = ∑ 𝑌𝑌𝑡𝑡
𝑛𝑛
𝑖𝑖=1
𝑛𝑛1

− 𝑎𝑎⋅∑ 𝑥𝑥𝑛𝑛
𝑖𝑖=1
𝑛𝑛1

.                           (3) 
And for smoothing the time series by the least squares 
method, in order to obtain and reflect the patterns of the 
forecast, it is necessary to correctly determine the type of 
curve and the time analytical dependence: 

𝑀𝑀 = �∑ ∑(𝑌𝑌𝑡𝑡−𝑌𝑌𝑝𝑝)2𝑛𝑛
𝑖𝑖=1
(𝑛𝑛1−𝑝𝑝−1)⋅𝑎𝑎

,                               (4) 

where 𝑌𝑌𝑝𝑝 are the calculated values of the time series, p is 
the number of parameters of the described trend. 
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Numerical methods 

They represent a way to solve a mathematical problem 
in numerical form. In the case of forecasting, information 
on previously obtained data is used. Accordingly, for this, 
the formulas (in generalized form) of the forecast (5) and 
correction (6) are used:  

𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖−3 + (ℎ1 ⋅ (2𝑦𝑦𝑖𝑖′ ⋅ 𝑦𝑦𝑖𝑖−1′ + 2𝑦𝑦𝑖𝑖−2′ ) + 𝑂𝑂(ℎ15)),  (5) 
where 5

1( )O h  the calculated error in the forecast, h1 is the 
iteration step, 1i +  is the forecast period. 
𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖−1 + (ℎ1 ⋅ (𝑦𝑦𝑖𝑖+1′ + 4𝑦𝑦𝑖𝑖′ + 𝑦𝑦𝑖𝑖−1′ ) + 𝑂𝑂(ℎ15)).    (6) 

General regression models 

These models are used in many problems of data 
analysis and forecasting. One of the most common 
regression models is multivariate. A general view of this 
model is presented in the following formula: 

𝑌𝑌𝑝𝑝 = 𝑓𝑓2 ⋅ ∑ 𝑥𝑥(𝑥𝑥𝑛𝑛 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3. . . 𝑥𝑥𝑛𝑛) = 𝑓𝑓(𝑥𝑥),              (7) 
where pY is the predicted indicator, 1 2 3, , ... nx x x x  are the 
factors affecting the forecast of water levels. In this case, 
the initial information is provided in the form of time 
series, and the following functions can be used to calculate 
the forecast: linear (8), power (9), exponential (10), 
exponential (11), hyperbolic (12). In formulas 8-12: a and 
b are the coefficients of forecast indicators. 

𝑌𝑌𝑝𝑝 = 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + 𝑏𝑏3𝑥𝑥3 + 𝑏𝑏4𝑥𝑥4+. . . +𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛.  (8) 
𝑌𝑌𝑝𝑝 = 𝑎𝑎𝑥𝑥1𝑏𝑏  1 + 𝑥𝑥2𝑏𝑏2 + 𝑥𝑥3𝑏𝑏3 + 𝑥𝑥4𝑏𝑏4+. . . +𝑥𝑥𝑛𝑛𝑏𝑏𝑛𝑛.           (9) 

𝑌𝑌𝑝𝑝 = 𝑎𝑎0 ⋅ (𝑏𝑏1𝑥𝑥1) + 𝑎𝑎1 ⋅ (𝑏𝑏2𝑥𝑥2) + 𝑎𝑎2 ⋅ (𝑏𝑏3𝑥𝑥3) + ⋯ 
+𝑎𝑎𝑛𝑛 ⋅ (𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛).  (10) 

𝑌𝑌𝑝𝑝 = 𝑎𝑎0 + 𝑏𝑏|𝑥𝑥| + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2+. . . +𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛.          (11) 
𝑌𝑌𝑝𝑝 = 1

𝑞𝑞+𝑏𝑏1𝑥𝑥1+𝑏𝑏2𝑥𝑥2+𝑏𝑏3𝑥𝑥3+...+𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛
.                  (12) 

In practice, the linear (8) function of the multivariate 
regression model is often used because of the simplicity of 
constructing the multiple regression equation. 

The results of predicting water levels at gauging 
stations and a comparison of these methods with the 
proposed solution of the authors are presented in section 4.  

3. Development of a method for predicting water 
levels based on a second generation 
recurrent neural network  
One of the main parameters of the possible impact of 

the flood situation in a certain territory (for example, the 
Republic of Bashkortostan) is H – the level of water rise 
in water bodies, measured daily at n-posts by employees 
of the regional department of hydrometeorology and 
environmental monitoring. We introduce the following 
notation: 𝐻𝐻𝑗𝑗𝑖𝑖𝑘𝑘  is the water level value measured at the k-th 
post on the i-th the date of the j-th year. Here 𝑖𝑖 = 1,𝑛𝑛������⃗ , 
where n is the number of measuring posts involved in the 
calculations, j is the number of the year, i is the specific 
measurement date. 

The task of forecasting is to calculate the water level 
value for the next i+1 day on a specific current i-th day of 
measurement, i.e. 𝐻𝐻𝑗𝑗𝑖𝑖+1𝑘𝑘 , or after 2 days on i+2 day, i.e. 
𝐻𝐻𝑗𝑗𝑖𝑖+2𝑘𝑘  or after l days - on the i+l-th day, i.e. 𝐻𝐻𝑗𝑗𝑖𝑖+𝑙𝑙𝑘𝑘  for any k. 

To solve this problem, it is proposed to use the results 
of previous measurements of the water level 𝐻𝐻𝑗𝑗𝑖𝑖𝑘𝑘  at all 
control posts located in the considered territory (in our 

case, the Republic of Bashkortostan) for all previous years. 
The proposed forecasting method is based on the 
construction of a recurrent neural network, the structure 
and algorithm of work (with training stages) of which are 
presented in fig. 1 and fig. 2: Initially, data (gauging 
stations codes, dates, water levels) enter the input layer of 
the neural network for further processing in the 
intermediate link (layers) of the RNN for the purpose of 
training. Teaching without a teacher is based on the 
integration of the methods of back propagation of error and 
Rosenblatt for a more accurate forecast of water level at 
hydrological posts. At the output of the neural network, we 
obtain the predicted values of the water levels for a given 
period of days. 
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Fig. 1. Structure of the developed RNN 
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From a mathematical point of view, this network is 

characterized by the combination of signals in the input 
layer (node, vector) C(i1), and the relationship between the 
intermediate and output layers is expressed as follows: 
𝐶𝐶(𝑖𝑖1 + 1) = 𝑓𝑓((𝑥𝑥(𝑖𝑖)) ⋅ 𝑥𝑥((𝑖𝑖1 − 1)) ⋅ 𝐶𝐶(𝑖𝑖1 − (𝑁𝑁 − 1)) ⋅
⋅ 𝐶𝐶1(𝑖𝑖1 − 1) ⋅ 𝐶𝐶1(𝑖𝑖1 − 𝑃𝑃)) ,   (13) 

where 𝑁𝑁 − 1 is the delay of the input signal (quantity), P 
is the delay of the output signal (quantity), i1 is the number 
of neurons in the intermediate layers. Thus, in this case, a 
recurrent neural network can be characterized by the set of 
numbers {N, P, I1}. Therefore, the vector C(i1) supplied to 
the input of the network has the following form: 



𝐶𝐶(𝑖𝑖1) = [1 ⋅ (𝐶𝐶 ⋅ (𝑖𝑖1)) ⋅ (𝐶𝐶 ⋅ (𝑖𝑖1 − 1)) ⋅. . .⋅ (𝐶𝐶 ⋅ (𝑖𝑖1 − (𝑁𝑁 − 1))),
((𝐶𝐶1 ⋅ (𝑖𝑖1 − 𝑃𝑃)) ⋅ (𝐶𝐶1 ⋅ (𝑖𝑖1 − 𝑃𝑃 + 1)) ⋅. . .⋅ (𝐶𝐶1 ⋅ (𝑖𝑖1 − 1)))]𝑇𝑇.   (14) 

The neuron itself has a sigmoidal activation function 
with a range of values (0, 1), described by the equation: 

𝜓𝜓 = 1
1+𝑒𝑒−𝑄𝑄

.                                      (15) 
We denote 𝑈𝑈𝑖𝑖 as the sum of the signals of each i-th 

neuron of all j-th intermediate layers, and g is the sum of 
the signals of each i-th neuron in the output layer, then 

𝑈𝑈𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑗𝑗 ⋅ 𝐶𝐶𝑗𝑗𝑁𝑁+𝑃𝑃
𝑗𝑗=0 ,                  (16) 

where 𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑓𝑓(𝑈𝑈𝑖𝑖). Respectively, 
𝑔𝑔 = ∑ 𝑤𝑤𝑖𝑖 ⋅ 𝐶𝐶(𝑖𝑖1)𝑖𝑖1

𝑖𝑖=0 ,                           (17) 
where С(𝑖𝑖1) = 𝑓𝑓(𝑔𝑔). Thus, the output is the result in the 
form of an output data signal (I1). A mathematical model 
of training a neural network for predicting water levels is 
presented in subsection 3.1. 

Neural network training for predicting water 
levels 

The main idea of the training method with the back 
propagation of the error is to spread the error signals from 
the outputs of the RNN to its inputs. Partially, this method 
of training a recurrent neural network was used in 
predicting and countering cyber threats [3]. The initial task 
is to minimize the error function: 

𝐸𝐸 = 1
2
∑ (𝑦𝑦𝑗𝑗 − 𝑑𝑑𝑗𝑗)2𝑝𝑝
𝑗𝑗=1 ,                         (18) 

where 𝑦𝑦𝑗𝑗 is the obtained value of the j-th output of the 
RNN, а 𝑑𝑑𝑗𝑗 is the reference value of the j-th output of the 
neural network. Accordingly, the minimization of E is 
determined by the gradient descent method. At the first 
stage, there is an automatic adjustment of the weight 
coefficients of the synapses: 

Δ𝑤𝑤𝑖𝑖𝑗𝑗 = −𝑚𝑚 ⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤𝑖𝑖𝑖𝑖

,                                (19) 

where 𝑤𝑤𝑖𝑖𝑗𝑗 is the synapse weight, -m(0<m<1)  is the neural 
network learning rate, expressed by a coefficient. Next, it 
is necessary to disclose (8) for more accurate training of 
the neural network. In this way, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤𝑖𝑖𝑖𝑖

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦𝑖𝑖

⋅
𝑑𝑑𝑦𝑦𝑖𝑖
𝑑𝑑𝑠𝑠𝑖𝑖

⋅
𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑𝑤𝑤𝑖𝑖𝑖𝑖

,                            (20) 

where sj is the sum of the input signals of each neuron 
RNN, and yj is the output of the j-th neuron. Respectively, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦𝑖𝑖

= ∑ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦𝑘𝑘

⋅ 𝑑𝑑𝑦𝑦𝑘𝑘
𝑑𝑑𝑠𝑠𝑘𝑘

⋅ 𝑑𝑑𝑠𝑠𝑘𝑘
𝑑𝑑𝑦𝑦𝑖𝑖

= ∑ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘 ⋅ 𝑑𝑑𝑦𝑦𝑘𝑘

𝑑𝑑𝑠𝑠𝑘𝑘
⋅ 𝑤𝑤𝑗𝑗𝑘𝑘

[𝑛𝑛+1],      (21) 
where k is the number of neurons in the n+1 layer. Also 
for disclosure (19) we introduce a new variable: 

𝛿𝛿𝑗𝑗
[𝑛𝑛+1] = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑦𝑦𝑖𝑖
⋅
𝑑𝑑𝑦𝑦𝑖𝑖
𝑑𝑑𝑠𝑠𝑖𝑖

.                              (22) 

After entering the variable, we obtain recursive 
formulas for the output (23) and input (24) layers of the 
RNN: 

𝛿𝛿𝑖𝑖
[𝑛𝑛] = 𝑑𝑑𝑦𝑦𝑖𝑖

𝑑𝑑𝑠𝑠𝑖𝑖
⋅ (y𝑖𝑖

[𝑛𝑛] − 𝑑𝑑𝑖𝑖),                       (23)  

𝛿𝛿𝑗𝑗
[𝑛𝑛] =

𝑑𝑑𝑦𝑦𝑖𝑖
𝑑𝑑𝑠𝑠𝑖𝑖

⋅ ∑ 𝛿𝛿𝑘𝑘
[𝑛𝑛+1] ⋅ 𝑤𝑤𝑗𝑗𝑘𝑘

[𝑛𝑛+1]
𝑘𝑘 .                  (24) 

Thus, the disclosed formula (25) for automatically 
adjusting the weight coefficients of the synapses is as 
follows: 

Δ𝑤𝑤𝑖𝑖𝑗𝑗 = −𝑚𝑚 ⋅ 𝛿𝛿𝑗𝑗
[𝑛𝑛] ⋅ 𝑦𝑦𝑖𝑖

[𝑛𝑛−1].                    (25) 
In the case of the Rosenblatt method, everything is 

different, since it was originally intended for the training 

of a single-layer perceptron. Thus, the rule for training a 
recurrent neural network is as follows: 

𝑞𝑞𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = 𝑞𝑞𝑖𝑖𝑗𝑗(𝑡𝑡) + 𝑎𝑎1 ⋅ 𝑥𝑥𝑖𝑖 ⋅ 𝑑𝑑𝑗𝑗                   (26) 
Next, it is necessary to integrate the training rules (26), 

the error minimization functions (18) and the weight 
adjustment of the synapse coefficients (25) in order to 
increase the accuracy of training and, as a result, the 
predicted values: 

𝐻𝐻𝑗𝑗𝑖𝑖+1𝑘𝑘 =
�𝑞𝑞𝑖𝑖𝑖𝑖(𝑡𝑡+1)⋅�

1
2∑ (𝑦𝑦𝑖𝑖−𝑑𝑑𝑖𝑖)2𝑝𝑝

𝑖𝑖=1 ��⋅𝐻𝐻𝑖𝑖𝑖𝑖
𝑘𝑘

𝛥𝛥𝑤𝑤𝑖𝑖𝑖𝑖
                 (27) 

Thus, based on the Rosenblatt methods and the back 
propagation of the error, formula (27) was obtained, which 
allows one to increase the accuracy of forecasting water 
levels at hydrological posts (the results are presented in 
Section 4). 

4. Analysis of the effectiveness of the proposed 
method for predicting water levels 
To analyze the effectiveness of the proposed method 

for predicting water levels, we used long-term data on 
measuring water levels at gauging stations provided by the 
Bashkir Administration for Hydrometeorology and 
Environmental Monitoring (Bashhydromet) from 
01.01.2000 to 15.05.2019 years in the form of: code of a 
hydrological post, date and water level at the gauging 
station. 

During the experiment, many iterations were carried 
out to calculate the predicted levels of water rise for the 
entire period of long-term observations – from 01.01.2001 
to 31.12.2019. The total array of data used in the 
experiment is 13 800 (hydrological station code, date and 
water level), of which 66%, these are data from long-term 
observations from 01.01.2000 to 31.12.2013, fed to the 
input neural networks, and the remaining 34% (01.01.2014 
– 31.03.2019) – for training. From 34% of the data, the last 
10 days are taken to predict water levels for the next 5 
days, and the rest of the information is used to analyze and 
improve the accuracy of the forecast as part of the training. 

As an example, the article presents the results of an 
experiment predicting the levels of water rise at three 
hydrological posts in Ufa, Shaksha district of Ufa and the 
village of Okhlebinino, Iglinsky district of the Republic of 
Bashkortostan during the spring flood of 2019. The 
experiment was carried out in two stages. The first stage 
was a comparison of real and predicted levels of water rise 
at hydrological posts at different periods of the flood – 
when there is a rise in water levels, a peak period and a 
decline. The results are shown in tables 1-3, where the 
actual water level is actually the measured value at the 
hydrological station, and the predicted water level is the 
water level value obtained using the neural network. 

The predicted values of water levels by the neural 
network at gauging stations at the beginning of the flood 
period (increase (rise) in water level) are presented in table 
1.  

Table 1. Predicted values for five days of water levels at 
gauging stations at the beginning of the flood period (increase) 

The date Hydropost 
number 

Real water 
level, cm. 

Predicted water 
level, cm. 

01.04.19 76289 -11.00 0.00 
02.04.19 8.00 20.00 



The date Hydropost 
number 

Real water 
level, cm. 

Predicted water 
level, cm. 

03.04.19 (Ufa, Belaya 
River) 

39.00 34.00 
04.04.19 63.00 50.00 
05.04.19 74.00 86.00 
01.04.19 

3000014 
(microdistrict 
Shaksha, Ufa) 

124.00 150.00 
02.04.19 131.00 147.00 
03.04.19 134.00 160.00 
04.04.19 134.00 161.00 
05.04.19 160.00 180.00 
01.04.19 76288 

(Iglinsky 
district, the 
village of 

Okhlebinino) 

291.00 300.00 
02.04.19 270.00 290.00 
03.04.19 281.00 305.00 
04.04.19 296.00 312.00 
05.04.19 323.00 330.00 

 
The predicted values of the water levels by the neural 

network at gauging stations during the flood peak are 
presented in table 2. 

Table 2. Predicted values for five days of water levels at 
gauging stations during the flood peak 

The 
date 

Hydropost 
number 

Real water 
level, cm. 

Predicted water 
level, cm. 

15.04.19 
76289 

(Ufa, Belaya 
River) 

350.00 395.00 
16.04.19 368.00 424.00 
17.04.19 366.00 430.00 
18.04.19 346.00 400.00 
19.04.19 315.00 390.00 
15.04.19 

3000014 
(microdistrict 
Shaksha, Ufa) 

323.00 380.00 
16.04.19 338.00 390.00 
17.04.19 323.00 370.00 
18.04.19 327.00 360.00 
19.04.19 338.00 360.00 
15.04.19 

76288 (Iglinsky 
district, the 
village of 

Okhlebinino) 

621.00 670.00 
16.04.19 622.00 673.00 
17.04.19 597.00 630.00 
18.04.19 528.00 570.00 
19.04.19 515.00 550.00 

 
The predicted values of the water levels by the neural 

network at gauging stations during the flood period are 
presented in table 3. 

Table 3. Predicted values for five days of water levels at 
gauging stations during the flood period 

The date Hydropost 
number 

Real water 
level, cm. 

Predicted water 
level, cm. 

29.04.19 
76289 

(Ufa, Belaya 
River) 

151.00 190.00 
30.04.19 140.00 180.00 
01.05.19 166.00 199.00 
02.05.19 188.00 205.00 
03.05.19 182.00 200.00 
29.04.19 

3000014 
(microdistrict 
Shaksha, Ufa) 

200.00 220.00 
30.04.19 204.00 200.00 
01.05.19 275.00 260.00 
02.05.19 313.00 300.00 
03.05.19 303.00 295.00 
29.04.19 

76288 (Iglinsky 
district, the 
village of 

Okhlebinino) 

365.00 390.00 
30.04.19 387.00 400.00 
01.05.19 405.00 420.00 
02.05.19 364.00 380.00 
03.05.19 329.00 350.00 

 
Thus, the error between the predicted and actual values 

of the water levels, according to the results of the 
experiment, is 3-20% (tables 1-3). 

The second stage of the experiment consisted in a 
comparative analysis of the data of the levels of water rise 
obtained using the described forecasting method based on 
the recurrent neural network and the known, most 
described in the literature sources, forecasting methods 
(least squares method, numerical methods and regression 
models). 

As an example, the article presents the results of 
comparing the actual levels of water rise at the Ufa 
gauging station during the flood peak according to 
Bashhydromet and the forecast levels of water rise 
obtained on the basis of calculations by known methods 
(table 4).  

An important difference of the proposed method for 
predicting water levels using a recurrent neural network in 
comparison with other known methods is the speed of 
obtaining the forecast and its correctness (more accurate) 
when forecasting ahead of time (for 5 days). The 
remaining methods considered in the experiment are more 
accurate only with short-term forecasting (1-2 days), the 
analysis results are shown in fig. 3. 
 

 
Fig. 3. An example of the results of forecasting water levels at hydrological posts 

 



According to the data in Table 4 and Fig. 3, it can be 
seen that in the first two days the forecast of water rise 
levels by known methods is quite accurate: the difference 
between the predicted values from the real ones varies 
from 1 to 3%. However, in the following days, the gap 
between the predicted and real values increases: for 
example, when calculating by the least squares method, 
the error reaches 34.5%, by numerical method – 36%, and 

for a linear regression model this indicator is 47.5%. It is 
worth noting that the implemented recurrent neural 
network does not give an accurate result in the first two 
days (in contrast to the known forecasting methods 
considered), but in the following days shows a more stable 
result. 
 

 
Table 4. Comparison results of real and forecast levels of water rise at the gauging station in Ufa during the flood peak, obtained on 

the basis of calculations by known methods 

The date Hydropost 
number 

Real water 
level, cm. 

Predicted values (least 
squares method), cm. 

Predicted values (numerical 
method), cm. 

Predicted values (general 
regression model), cm. 

15.04.19 
76289 

(Ufa, Belaya 
River) 

350.00 390.00 360.00 353.00 
16.04.19 368.00 410.00 370.00 378.00 
17.04.19 366.00 470.00 420.00 460.00 
18.04.19 346.00 490.00 540.00 540.00 
19.04.19 315.00 480.00 280.00 600.00 

 

5. Conclusions 
A method is proposed for early detection of threats 

(for example, the Republic of Bashkortostan) for 
parrying them in complex distributed systems. The 
proposed forecasting method is based on the construction 
of a recurrent neural network, the structure and operation 
algorithm of which is described in the article. The results 
of the analysis of the effectiveness of the proposed 
method for predicting water levels showed an error of 
predicted values from 3 to 20%. A comparative analysis 
of the data of the levels of water rise obtained using the 
described forecasting method based on the recurrent 
neural network and the well-known, most described in 
the literature sources, forecasting methods (least squares 
method, numerical methods and regression models), 
which revealed errors in other forecasting methods up to 
47.5%. Thus, the use of artificial neural network 
technology has shown more stable results in forecasting 
threats, using the example of spring flood, which will 
allow the special services to give the necessary time for 
flood control measures to prepare for the protection of 
complex distributed (including technical objects) 
systems. 
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