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Photorealistic rendering systems have recently found new applications in artificial intelligence, specifically in computer vision for 

the purpose of generation of image and video sequence datasets. The problem associated with this application is producing large 
number of photorealistic images with high variability of 3d models and their appearance. In this work, we propose an approach based 
on combining existing procedural texture generation techniques and domain randomization to generate large number of highly 
variative digital assets during the rendering process. This eliminates the need for a large pre-existing database of digital assets (only a 
small set of 3d models is required), and generates objects with unique appearance during rendering stage, reducing the needed post-
processing of images and storage requirements. Our approach uses procedural texturing and material substitution to rapidly produce 
large number of variations of digital assets. The proposed solution can be used to produce training datasets for artificial intelligence 
applications and can be combined with most of state-of-the-art methods of scene generation. 
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1. Introduction 
There are two main challenges in the training of 

artificial intelligence models is data quantity and data 
quality. Data quantity concerns availability of sufficient 
amounts of training and testing data. Training modern 
computer vision algorithms requires image datasets of a 
significant volume - tens and hundreds of thousands of 
images for training on static images and an order of 
magnitude more for animation [1, 2] Also, by data 
quantity we mean how balanced is the data – are all the 
different classes, which the model must recognize, 
represented enough. This can be a significant problem 
because certain classes can be very rare in the data 
obtained from real world [3]. Data quality can mean 
many different characteristics, but one that is especially 
important for images is accurate markup. For example, 
if model needs to detect certain objects in an image, 
then in the training data these objects must be 
accurately annotated. This is usually done manually or 
semi-automatically with the help of segmentation tools 
[4, 5]. Annotating a large image dataset manually is 
extremely expensive, and often manual marking does 
not have the necessary accuracy (automated markup 
options also suffer from insufficient accuracy and have 
disadvantages). 

Using synthetic data (in this case, photorealistic 
images produced by rendering 3d scenes) can easily 
solve these problems. The solution to data quantity 
problem can be achieved by using the algorithms for 
procedurally setting the optical properties of materials 
and surfaces (displacement maps), this way it’s possible 
to quickly generate almost unlimited number of training 
examples with any distribution of objects (and therefore 
classes) present in generated images. In addition, one 
can create training examples which are scarce or almost 
non-existent in “real-life” datasets. For example, 
emergency situations on the road or in production, 
military operations, objects that only exist as design 
projects or prototypes. And second, it is possible to 
produce pixel-perfect image annotation together with 
rendered image. 

But there are also several drawbacks with synthetic 
data generation. The main problem is producing 3d 
scene setups suitable for rendering adequate image 
dataset. The first part of this problem is to generate a 3d 
scene layout meaningful placement of objects (3d 
models and light sources) and choosing 3d models to 
include in the generated scene. And the second part is 
setting the optical properties of material models for 
objects in scene, so that they will mimic real-life 
objects. Similar problem arises in digital content 
creation in visual effects and video games industries, 
where several variations of the same digital asset (such 
as 3d models, material models, texture, etc.) are created 
by 3d artists using software tools. However, for large 
datasets generation it’s not feasible to manual produce 
variations of 3d assets.  

There is also drawback associated with time and 
computational resources required to render dataset with 
the size of thousands of images.  

In this work, we propose an approach aimed at 
alleviating the latter problem by using procedural 
texturing and material substitution to produce large 
number of variations from small set of base digital 
assets.  

2. Related Work 
The drawback associated with computational 

resources can be solved by using fast and simple 
rasterization-based rendering solutions (usually 
OpenGL-based) [6], possibly in tandem with global 
illumination approximation such as ambient occlusion 
[7].  

Of course, rendering of thousands of images or 
sequences requires significant computational resources. 
But while in simulators developed for training people in 
many cases a schematic image of a three-dimensional 
scene is enough for a person (although it is necessary to 
provide real visualization time), modern AI systems 
based on deep neural networks are trained according to 
different principles. It is important for AI systems to 
accurately model the data on which training is supposed 
to be carried out (but there is no real-time requirement). 
For synthetic data to closely approximate real-life 
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datasets, it should simulate reality (i.e. the image should 
be photorealistic). Otherwise, there is no guarantee that 
AI will “work” on similar examples in reality, since it is 
currently practically impossible to understand the 
causes of a failure in a multilayer neural network [8-10]. 
So, photorealistic rendering, which is usually based on 
path tracing algorithm or its many variants needs to be 
used. Works [11-13] demonstrate advantages of using 
photorealistic rendering for synthetic datasets 
generation. Because the computational cost of 
physically correct rendering is still quite high and 
rendering speed and scaling of the training dataset 
generation system as a whole is important, solutions, 
relying on photorealistic rendering have disadvantage in 
this regard. It is, however, alleviated by the recent 
advent of publicly available hardware accelerated ray-
tracing, which can provide significant speedups for 
photorealistic rendering [14] as well as denoisers [15]. 

Several approaches exist to automate the process of 
creating 3d scenes for photorealistic image datasets 
creation. In [16-19] authors use Augmented Reality 
(AR) based techniques to insert synthetic objects in 
photos. This approach requires a way to choose the 
position of inserted objects – random with some 
distribution, using existing image annotation or 
additional reconstruction tools. 

In [8] the 3d scene is generated by a set of rules 
which make use of randomized parameters to select 
some of 3d models from a database and to procedurally 
generate others. A similar approach, called Domain 
Randomization (DR) is used in [20-21]. Domain 
randomization implies making selection of parameters 
(aspects of domain) which are randomized for each 
generated sample. Such parameters may include camera 
position and field of view, number of objects, number 
of lights, textures used for objects, etc.  

In [22] physical simulation is used to achieve 
realistic placement of 3d models on a surface.  

There are also works that use variety of approaches 
to scene description and generation, such as domain 
specific languages [23], scene graphs [24], stochastic 
grammars [25] for scenes description and generation. 

Finally, there are solutions that can generate a 
whole synthetic dataset similar to specified real-world 
dataset [26] 

These works mainly focus on composing realistic 
3d scenes from existing digital assets – 3d models, 
textures, materials, etc. While in some cases [8] the 
digital assets itself are randomized, this is done in a 
very limited manner, -usually only the base material 
color is changed. And because of it, these approaches 
require large databases of digital assets to produce 
images with high variability of objects in them. 

One of the methods to further increase variety and 
realism of synthesized images and to match them more 
closely to real-life datasets is domain adaptation [27-
28]. However, such techniques require additional image 
processing stage which requires significant time and 
computational power, especially for images with 
relatively high resolution.  

In this work, we propose an approach based on 
combining existing procedural texture generation 
techniques and domain randomization to generate large 
number of highly variative digital assets during the 
rendering process. The proposed solution can be 
combined with most of the reviewed methods of scene 
generation. 

3. Proposed solution 
The motivation behind our solution is to produce 

many variants of the same digital asset (in particular, 3d 
model with assigned materials and textures) to 
minimize the amount of manual and expensive work 
done by 3d artists. To achieve this, we propose the 
following generation pipeline (fig. 1). 

 
Fig. 1. Architecture of the proposed image generation pipeline 

 
Input scenario specifies settings for the whole 

pipeline: what kind of scenes are to be generated – 
classes of objects to be included, lighting type (indoor 
or outdoor, day or night, etc.), which AOVs (arbitrary 
output values) should be output by rendering system 
(instance segmentation masks, binary object masks, 
normals, depth, etc.), image post-processing (if any) to 

be done after rendering and randomization domain – 
which parameters should be randomized and what is 
randomization distribution - material model parameters, 
procedural textures and effects, object classes 
distributions, object placement and so on. 

Cloud storage or database contains base digital 
assets: 



1. 3d models with material markup - i.e. what parts of 
the model have or can have different material types. 

2. Materials – base material types, representing 
common BRDF blends, such as purely diffuse 
materials (such as brushed wood or rubber), 
reflective materials (such as polished metals), 
diffuse + reflective materials (such as plastics or 
brushed metals), reflective + refractive materials 
(such as glass), diffuse with two reflective layer 
(such as car paint with coating) and so on. 

3. Textures – collection of image textures and normal 
maps to be used in materials. 

4. Environment maps – HDR spherical panorama 
images for use for image-based lighting, 
representing variety of lighting conditions. 

5. Content metadata – information that is used by 
domain randomization tools to select fitting digital 
assets from the storage according to input scenario. 
This includes: 
˗ correspondence of classes to 3d models (for 

example, which 3d models are models of cars, 
chairs or humans),  

˗ correspondence of material classes to materials 
in the storage (for example, that stained glass 
and clear non-refractive glass are both of type 
“glass” and therefore can be assigned to a 3d 
model part marked as “glass” type),  

˗ correspondence of textures to material 
parameters (which textures can be used for 
which material parameters),  

˗ information of HDR images (what lighting 
conditions this particular image has) and so on. 

Domain randomization tools produce scene 
descriptions from input scenario. This stage can query 
digital assets storage and using content metadata 
randomly or deterministically (depending on input 
scenario) select appropriate digital assets and generate 
requested number of scene descriptions. The generated 
scene description is intended to be used by rendering 
system directly.  

As photorealistic rendering system in our work we 
used open-source system Hydra Renderer [29] which 
uses.xml scene description. Scene description also 
includes what procedural effects should be used and 
what are their input parameters (if any). Hydra Renderer 
supports user extensions for procedural textures [30] 
and the usage of this functionality is one of the key 
elements of our solution.  

There are several properties of procedural textures 
that make them a vital element in our generation 
pipeline: 
1. Procedural textures can be parametrized with 

arbitrary values and therefore it is possible to 
generate a large number of variations of the same 
texture. 

2. It’s possible to apply texture to geometry without 
uv-unwrapping if the texture is parametrized by, for 
example, world space or object space position. This 
allows to relax requirements for 3d models and 
eliminate predominantly manual work of doing uv-
mapping for them. 

3. Finally, procedural textures don’t have fixed 
resolution (resulting texture is infinite and has no 
seams) and because of this it is possible to produce 
detailed high-quality materials suitable for 
application to variety of 3d models of different 
scale. 

As a part of this work we developed several 
procedural textures which allowed us to greatly increase 
variation of 3d objects and also increase realism of their 
appearance. 

Image post-processing tools goal is to adjust 
images, output by the rendering system or produce 
additional data about these images. The tasks performed 
by this stage can involve:  
1) measuring 2d bounding boxes for objects/instances; 
2) applying variety of image-space effects to further 

increase variety of output images or better match 
them to real-life datasets, for example: 
˗ chromatic aberrations, 
˗ barrel simulation, 
˗ blur, 
˗ transformations and warping the image, 

including resampling for the purpose of anti-
aliasing, 

˗ noise 
˗ and others. 

3) cutting objects out of rendered image, 
4) composing rendered objects with other images (as 

Augmented Reality based solutions mentioned 
earlier do) 

5) format conversions, 
6) and others. 

It is worth noting that all listed tasks can be 
performed using simple python scripts or open-source 
compositing software like Natron [31,32] and don’t 
need complex and computation-intensive processing 
with neural networks. 

In the described image generation pipeline 
architecture, the domain randomization tools stage can 
be replaced by any other of the reviewed approaches to 
scene generation – scene graph produced by neural 
network processing of existing datasets, stochastic 
grammars, markup data from existing dataset for 
employing augmentation reality techniques. Or any 
custom scene generation solution, for example placing 
objects inside existing scene with respect to its depth 
buffer. 

4. Object appearance variation techniques 

Procedural textures 

As we mentioned before, one of the key parts of our 
work is the use of procedural textures. In this section we 
describe procedural textures developed for use in our 
generation pipeline.  

The first problem we were trying to solve with 
procedural textures is to provide additional details to 
rendered 3d models to produce more realistic images in 
contrast to crisp and clear look of rendered objects. For 
this purpose we implemented several procedural 
textures, simulating effects such as dirt, rust and 
scratches on materials textures (fig. 2-5). 



 
Fig. 2. Rust procedural texture variations on different models 

 

 
Fig. 3. Dirt procedural texture variation on different models 

 

 
Fig. 4. Scratches procedural texture variations. Also affects 

normal map 
 

 
Fig. 5. Rust and dirt procedural textures applied to road signs 

models normal map 
 
All these textures were parametrized in a way, that 

allowed domain randomization tools significantly vary 
the appearance of the texture by passing different (and 
possibly random) values as these parameters. Since the 
implementation of these procedural effects is 
predominantly based on noise functions most of these 
parameters correspond to noise parameters such as 
amplitude, frequency and persistence. Among other 
common parameters used is the relative height (or other 
dimension) of an object, the effect reaches. This allows 

as to dynamically control how far effect spreads on 3d 
model, which is impossible with ordinary textures. 

Developed procedural textures can affect not only 
colors or blending masks between different materials, 
but also normal maps (fig. 6) or can be used for 
displacement maps to slightly deform the object (fig. 7). 
Changing geometry in this way also produces changes 
in its silhouette and therefore in segmentation masks. 

 
Fig. 6. Procedural displacement. Top - without displacement, 

bottom - with mild displacement, warped regions are 
highlighted 

 

 
Fig. 7. Material substitution example 

 

Material substitution 

In addition to procedural textures, another technique 
to increase variability of 3d models implemented in 
proposed solution is material substitution. In the 
proposed data generation pipeline, digital content 
storage contains materials, while 3d models are marked 
up with material types. This allows to specify a 
collection of materials – manually created, pre-
generated or imported from one of the existing open 
libraries. These materials can then be classified into 



several categories such as “wood”, “metal”, “car paint”, 
“plastic” and so on. And during scene generation phase, 
domain randomization tools can allow 3d models to use 
random materials within classes, specified as possible 
for this model. For example, chairs can have materials 
from “wood” or “metal” classes, while “glass” type 
materials are unlikely to be assigned to chair model. 

In the reviewed existing solutions this technique is 
mostly used in a very rudimentary form – only color is 
changed, not the material (i.e. BRDF or BRDF blend) 
itself.  

5. Results and conclusion 
Proposed image datasets generation pipeline 

architecture can create many variations of the same 3d 
model using procedural textures and material 
substitution techniques. Other 3d scene parameters, 
which are commonly varied in existing solutions, such 
as lighting (HDR spherical maps for image-based 
lighting point and area lights) can also be utilized in the 
proposed pipeline. This allows to use much smaller pre-
existing digital assets collection while producing output 
images of high variability.  

Let’s consider the case of a simple scene with only 
one 3d model in it. In existing solutions appearance of a 
single 3d model is most commonly varied by a single 
parameter – base color. Proposed solution allows also to 
specify several procedural textures, each with at least 3 
parameters (related to noise functions), which 
significantly alter the appearance of objects (fig. 2-5). 
So, for single 3d model with single material each 
procedural texture introduces another 3 dimensions of 
appearance variability compared to only single “color” 
dimension in existing solutions. This allows our 
solution to produce exponentially more variations of a 
single 3d model with single material. And with material 
substitution we can also alter the material types suitable 
for this particular 3d model.  

Existing works on synthetic image datasets 
generation are mostly concerned with scene generation 
and rely on having large collections of digital assets to 
construct these scenes from. While there exist large 3d 
models collections such as ShapeNet [33], they usually 
have content of poor quality compared to assets, created 
by experienced 3d artists. And with proposed approach 
of using procedural textures and material substitution, it 
is possible to produce many variations out of small set 
of high-quality models that portray real-life objects 
more accurate.  

However, proposed solution doesn’t exclude lower 
quality models and is able to deal with 3d models 
without texture coordinates because of used procedural 
texturing techniques. 

Finally, proposed image generation pipeline can be 
integrated with any of the reviewed solutions for scene 
generation. 
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