
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY
4.0)

Variable photorealistic image synthesis for training dataset generation
V.V. Sanzharov1, V.A. Frolov2,3, A.G. Voloboy3

vs@asugubkin.ru | vladimir.frolov@graphics.cs.msu.ru | voloboy@gin.keldysh.ru
1Gubkin Russian State University of Oil and Gas, Moscow, Russia

2Moscow State University, Moscow, Russia
3Keldysh Institute of Applied Mathematics, Moscow, Russia

Photorealistic rendering systems have recently found new applications in artificial intelligence, specifically in computer vision for

the purpose of generation of image and video sequence datasets. The problem associated with this application is producing large
number of photorealistic images with high variability of 3d models and their appearance. In this work, we propose an approach based
on combining existing procedural texture generation techniques and domain randomization to generate large number of highly
variative digital assets during the rendering process. This eliminates the need for a large pre-existing database of digital assets (only a
small set of 3d models is required), and generates objects with unique appearance during rendering stage, reducing the needed post-
processing of images and storage requirements. Our approach uses procedural texturing and material substitution to rapidly produce
large number of variations of digital assets. The proposed solution can be used to produce training datasets for artificial intelligence
applications and can be combined with most of state-of-the-art methods of scene generation.

Keywords: photorealistic rendering, procedural generation, synthetic datasets, computer vision.

1. Introduction
There are two main challenges in the training of

artificial intelligence models is data quantity and data
quality. Data quantity concerns availability of sufficient
amounts of training and testing data. Training modern
computer vision algorithms requires image datasets of a
significant volume - tens and hundreds of thousands of
images for training on static images and an order of
magnitude more for animation [1, 2] Also, by data
quantity we mean how balanced is the data – are all the
different classes, which the model must recognize,
represented enough. This can be a significant problem
because certain classes can be very rare in the data
obtained from real world [3]. Data quality can mean
many different characteristics, but one that is especially
important for images is accurate markup. For example,
if model needs to detect certain objects in an image,
then in the training data these objects must be
accurately annotated. This is usually done manually or
semi-automatically with the help of segmentation tools
[4, 5]. Annotating a large image dataset manually is
extremely expensive, and often manual marking does
not have the necessary accuracy (automated markup
options also suffer from insufficient accuracy and have
disadvantages).

Using synthetic data (in this case, photorealistic
images produced by rendering 3d scenes) can easily
solve these problems. The solution to data quantity
problem can be achieved by using the algorithms for
procedurally setting the optical properties of materials
and surfaces (displacement maps), this way it’s possible
to quickly generate almost unlimited number of training
examples with any distribution of objects (and therefore
classes) present in generated images. In addition, one
can create training examples which are scarce or almost
non-existent in “real-life” datasets. For example,
emergency situations on the road or in production,
military operations, objects that only exist as design
projects or prototypes. And second, it is possible to
produce pixel-perfect image annotation together with
rendered image.

But there are also several drawbacks with synthetic
data generation. The main problem is producing 3d
scene setups suitable for rendering adequate image
dataset. The first part of this problem is to generate a 3d
scene layout meaningful placement of objects (3d
models and light sources) and choosing 3d models to
include in the generated scene. And the second part is
setting the optical properties of material models for
objects in scene, so that they will mimic real-life
objects. Similar problem arises in digital content
creation in visual effects and video games industries,
where several variations of the same digital asset (such
as 3d models, material models, texture, etc.) are created
by 3d artists using software tools. However, for large
datasets generation it’s not feasible to manual produce
variations of 3d assets.

There is also drawback associated with time and
computational resources required to render dataset with
the size of thousands of images.

In this work, we propose an approach aimed at
alleviating the latter problem by using procedural
texturing and material substitution to produce large
number of variations from small set of base digital
assets.

2. Related Work
The drawback associated with computational

resources can be solved by using fast and simple
rasterization-based rendering solutions (usually
OpenGL-based) [6], possibly in tandem with global
illumination approximation such as ambient occlusion
[7].

Of course, rendering of thousands of images or
sequences requires significant computational resources.
But while in simulators developed for training people in
many cases a schematic image of a three-dimensional
scene is enough for a person (although it is necessary to
provide real visualization time), modern AI systems
based on deep neural networks are trained according to
different principles. It is important for AI systems to
accurately model the data on which training is supposed
to be carried out (but there is no real-time requirement).
For synthetic data to closely approximate real-life

mailto:vs@asugubkin.ru
mailto:vladimir.frolov@graphics.cs.msu.ru

datasets, it should simulate reality (i.e. the image should
be photorealistic). Otherwise, there is no guarantee that
AI will “work” on similar examples in reality, since it is
currently practically impossible to understand the
causes of a failure in a multilayer neural network [8-10].
So, photorealistic rendering, which is usually based on
path tracing algorithm or its many variants needs to be
used. Works [11-13] demonstrate advantages of using
photorealistic rendering for synthetic datasets
generation. Because the computational cost of
physically correct rendering is still quite high and
rendering speed and scaling of the training dataset
generation system as a whole is important, solutions,
relying on photorealistic rendering have disadvantage in
this regard. It is, however, alleviated by the recent
advent of publicly available hardware accelerated ray-
tracing, which can provide significant speedups for
photorealistic rendering [14] as well as denoisers [15].

Several approaches exist to automate the process of
creating 3d scenes for photorealistic image datasets
creation. In [16-19] authors use Augmented Reality
(AR) based techniques to insert synthetic objects in
photos. This approach requires a way to choose the
position of inserted objects – random with some
distribution, using existing image annotation or
additional reconstruction tools.

In [8] the 3d scene is generated by a set of rules
which make use of randomized parameters to select
some of 3d models from a database and to procedurally
generate others. A similar approach, called Domain
Randomization (DR) is used in [20-21]. Domain
randomization implies making selection of parameters
(aspects of domain) which are randomized for each
generated sample. Such parameters may include camera
position and field of view, number of objects, number
of lights, textures used for objects, etc.

In [22] physical simulation is used to achieve
realistic placement of 3d models on a surface.

There are also works that use variety of approaches
to scene description and generation, such as domain
specific languages [23], scene graphs [24], stochastic
grammars [25] for scenes description and generation.

Finally, there are solutions that can generate a
whole synthetic dataset similar to specified real-world
dataset [26]

These works mainly focus on composing realistic
3d scenes from existing digital assets – 3d models,
textures, materials, etc. While in some cases [8] the
digital assets itself are randomized, this is done in a
very limited manner, -usually only the base material
color is changed. And because of it, these approaches
require large databases of digital assets to produce
images with high variability of objects in them.

One of the methods to further increase variety and
realism of synthesized images and to match them more
closely to real-life datasets is domain adaptation [27-
28]. However, such techniques require additional image
processing stage which requires significant time and
computational power, especially for images with
relatively high resolution.

In this work, we propose an approach based on
combining existing procedural texture generation
techniques and domain randomization to generate large
number of highly variative digital assets during the
rendering process. The proposed solution can be
combined with most of the reviewed methods of scene
generation.

3. Proposed solution
The motivation behind our solution is to produce

many variants of the same digital asset (in particular, 3d
model with assigned materials and textures) to
minimize the amount of manual and expensive work
done by 3d artists. To achieve this, we propose the
following generation pipeline (fig. 1).

Fig. 1. Architecture of the proposed image generation pipeline

Input scenario specifies settings for the whole

pipeline: what kind of scenes are to be generated –
classes of objects to be included, lighting type (indoor
or outdoor, day or night, etc.), which AOVs (arbitrary
output values) should be output by rendering system
(instance segmentation masks, binary object masks,
normals, depth, etc.), image post-processing (if any) to

be done after rendering and randomization domain –
which parameters should be randomized and what is
randomization distribution - material model parameters,
procedural textures and effects, object classes
distributions, object placement and so on.

Cloud storage or database contains base digital
assets:

1. 3d models with material markup - i.e. what parts of
the model have or can have different material types.

2. Materials – base material types, representing
common BRDF blends, such as purely diffuse
materials (such as brushed wood or rubber),
reflective materials (such as polished metals),
diffuse + reflective materials (such as plastics or
brushed metals), reflective + refractive materials
(such as glass), diffuse with two reflective layer
(such as car paint with coating) and so on.

3. Textures – collection of image textures and normal
maps to be used in materials.

4. Environment maps – HDR spherical panorama
images for use for image-based lighting,
representing variety of lighting conditions.

5. Content metadata – information that is used by
domain randomization tools to select fitting digital
assets from the storage according to input scenario.
This includes:
˗ correspondence of classes to 3d models (for

example, which 3d models are models of cars,
chairs or humans),

˗ correspondence of material classes to materials
in the storage (for example, that stained glass
and clear non-refractive glass are both of type
“glass” and therefore can be assigned to a 3d
model part marked as “glass” type),

˗ correspondence of textures to material
parameters (which textures can be used for
which material parameters),

˗ information of HDR images (what lighting
conditions this particular image has) and so on.

Domain randomization tools produce scene
descriptions from input scenario. This stage can query
digital assets storage and using content metadata
randomly or deterministically (depending on input
scenario) select appropriate digital assets and generate
requested number of scene descriptions. The generated
scene description is intended to be used by rendering
system directly.

As photorealistic rendering system in our work we
used open-source system Hydra Renderer [29] which
uses.xml scene description. Scene description also
includes what procedural effects should be used and
what are their input parameters (if any). Hydra Renderer
supports user extensions for procedural textures [30]
and the usage of this functionality is one of the key
elements of our solution.

There are several properties of procedural textures
that make them a vital element in our generation
pipeline:
1. Procedural textures can be parametrized with

arbitrary values and therefore it is possible to
generate a large number of variations of the same
texture.

2. It’s possible to apply texture to geometry without
uv-unwrapping if the texture is parametrized by, for
example, world space or object space position. This
allows to relax requirements for 3d models and
eliminate predominantly manual work of doing uv-
mapping for them.

3. Finally, procedural textures don’t have fixed
resolution (resulting texture is infinite and has no
seams) and because of this it is possible to produce
detailed high-quality materials suitable for
application to variety of 3d models of different
scale.

As a part of this work we developed several
procedural textures which allowed us to greatly increase
variation of 3d objects and also increase realism of their
appearance.

Image post-processing tools goal is to adjust
images, output by the rendering system or produce
additional data about these images. The tasks performed
by this stage can involve:
1) measuring 2d bounding boxes for objects/instances;
2) applying variety of image-space effects to further

increase variety of output images or better match
them to real-life datasets, for example:
˗ chromatic aberrations,
˗ barrel simulation,
˗ blur,
˗ transformations and warping the image,

including resampling for the purpose of anti-
aliasing,

˗ noise
˗ and others.

3) cutting objects out of rendered image,
4) composing rendered objects with other images (as

Augmented Reality based solutions mentioned
earlier do)

5) format conversions,
6) and others.

It is worth noting that all listed tasks can be
performed using simple python scripts or open-source
compositing software like Natron [31,32] and don’t
need complex and computation-intensive processing
with neural networks.

In the described image generation pipeline
architecture, the domain randomization tools stage can
be replaced by any other of the reviewed approaches to
scene generation – scene graph produced by neural
network processing of existing datasets, stochastic
grammars, markup data from existing dataset for
employing augmentation reality techniques. Or any
custom scene generation solution, for example placing
objects inside existing scene with respect to its depth
buffer.

4. Object appearance variation techniques

Procedural textures

As we mentioned before, one of the key parts of our
work is the use of procedural textures. In this section we
describe procedural textures developed for use in our
generation pipeline.

The first problem we were trying to solve with
procedural textures is to provide additional details to
rendered 3d models to produce more realistic images in
contrast to crisp and clear look of rendered objects. For
this purpose we implemented several procedural
textures, simulating effects such as dirt, rust and
scratches on materials textures (fig. 2-5).

Fig. 2. Rust procedural texture variations on different models

Fig. 3. Dirt procedural texture variation on different models

Fig. 4. Scratches procedural texture variations. Also affects

normal map

Fig. 5. Rust and dirt procedural textures applied to road signs

models normal map

All these textures were parametrized in a way, that

allowed domain randomization tools significantly vary
the appearance of the texture by passing different (and
possibly random) values as these parameters. Since the
implementation of these procedural effects is
predominantly based on noise functions most of these
parameters correspond to noise parameters such as
amplitude, frequency and persistence. Among other
common parameters used is the relative height (or other
dimension) of an object, the effect reaches. This allows

as to dynamically control how far effect spreads on 3d
model, which is impossible with ordinary textures.

Developed procedural textures can affect not only
colors or blending masks between different materials,
but also normal maps (fig. 6) or can be used for
displacement maps to slightly deform the object (fig. 7).
Changing geometry in this way also produces changes
in its silhouette and therefore in segmentation masks.

Fig. 6. Procedural displacement. Top - without displacement,

bottom - with mild displacement, warped regions are
highlighted

Fig. 7. Material substitution example

Material substitution

In addition to procedural textures, another technique
to increase variability of 3d models implemented in
proposed solution is material substitution. In the
proposed data generation pipeline, digital content
storage contains materials, while 3d models are marked
up with material types. This allows to specify a
collection of materials – manually created, pre-
generated or imported from one of the existing open
libraries. These materials can then be classified into

several categories such as “wood”, “metal”, “car paint”,
“plastic” and so on. And during scene generation phase,
domain randomization tools can allow 3d models to use
random materials within classes, specified as possible
for this model. For example, chairs can have materials
from “wood” or “metal” classes, while “glass” type
materials are unlikely to be assigned to chair model.

In the reviewed existing solutions this technique is
mostly used in a very rudimentary form – only color is
changed, not the material (i.e. BRDF or BRDF blend)
itself.

5. Results and conclusion
Proposed image datasets generation pipeline

architecture can create many variations of the same 3d
model using procedural textures and material
substitution techniques. Other 3d scene parameters,
which are commonly varied in existing solutions, such
as lighting (HDR spherical maps for image-based
lighting point and area lights) can also be utilized in the
proposed pipeline. This allows to use much smaller pre-
existing digital assets collection while producing output
images of high variability.

Let’s consider the case of a simple scene with only
one 3d model in it. In existing solutions appearance of a
single 3d model is most commonly varied by a single
parameter – base color. Proposed solution allows also to
specify several procedural textures, each with at least 3
parameters (related to noise functions), which
significantly alter the appearance of objects (fig. 2-5).
So, for single 3d model with single material each
procedural texture introduces another 3 dimensions of
appearance variability compared to only single “color”
dimension in existing solutions. This allows our
solution to produce exponentially more variations of a
single 3d model with single material. And with material
substitution we can also alter the material types suitable
for this particular 3d model.

Existing works on synthetic image datasets
generation are mostly concerned with scene generation
and rely on having large collections of digital assets to
construct these scenes from. While there exist large 3d
models collections such as ShapeNet [33], they usually
have content of poor quality compared to assets, created
by experienced 3d artists. And with proposed approach
of using procedural textures and material substitution, it
is possible to produce many variations out of small set
of high-quality models that portray real-life objects
more accurate.

However, proposed solution doesn’t exclude lower
quality models and is able to deal with 3d models
without texture coordinates because of used procedural
texturing techniques.

Finally, proposed image generation pipeline can be
integrated with any of the reviewed solutions for scene
generation.

6. References:
[1] Karpathy, Andrej, et al. Large-scale video

classification with convolutional neural networks. //

Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 2014

[2] Wu, Zuxuan, et al. Deep learning for video
classification and captioning // Frontiers of
multimedia research. 2017. 3-29.

[3] Фаизов Б.В., Шахуро В.И., Санжаров В.В.,
Конушин А.С. Классификация редких
дорожных знаков // Компьютерная Оптика, T.
44, №2, 2020

[4] Moehrmann, Julia, and Gunther Heidemann.
Efficient annotation of image data sets for
computer vision applications. // Proceedings of the
1st International Workshop on Visual Interfaces for
Ground Truth Collection in Computer Vision
Applications. 2012.

[5] Gao, Chao, Dongguo Zhou, and Yongcai Guo.
Automatic iterative algorithm for image
segmentation using a modified pulse-coupled
neural network. // Neurocomputing 119 (2013):
332-338.

[6] Su, Hao, et al. Render for cnn: Viewpoint
estimation in images using cnns trained with
rendered 3d model views. // Proceedings of the
IEEE International Conference on Computer
Vision. 2015.

[7] Kirsanov, Pavel, et al. DISCOMAN: Dataset of
Indoor Sсenes for Odometry, Mapping And
Navigation. // arXiv preprint arXiv:1909.12146
(2019).

[8] Nguyen, Anh, Jason Yosinski, and Jeff Clune.
Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images.
// Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015.

[9] Zhang, Chiyuan, et al. Understanding deep learning
requires rethinking generalization. // arXiv preprint
arXiv:1611.03530 (2016).

[10] Montavon, Grégoire, Wojciech Samek, and Klaus-
Robert Müller. Methods for interpreting and
understanding deep neural networks // Digital
Signal Processing 73 (2018): 1-15.

[11] Movshovitz-Attias, Yair, Takeo Kanade, and Yaser
Sheikh. How useful is photo-realistic rendering for
visual learning?. // European Conference on
Computer Vision. Springer, Cham, 2016.

[12] Tsirikoglou, Apostolia, et al. Procedural modeling
and physically based rendering for synthetic data
generation in automotive applications. // arXiv
preprint arXiv:1710.06270 (2017).

[13] Zhang, Yinda, et al. Physically-based rendering for
indoor scene understanding using convolutional
neural networks. // Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition. 2017

[14] Sanzharov V., Gorbonosov A., Frolov V., Voloboy
A. Examination of the Nvidia RTX // CEUR
Workshop Proceedings, vol. 2485 (2019), p. 7-12

[15] S.V.Ershov, D.D.Zhdanov, A.G.Voloboy,
V.A.Galaktionov. Two denoising algorithms for bi-
directional Monte Carlo ray tracing // Mathematica
Montisnigri, Vol. XLIII, 2018, p. 78-100.

https://lppm3.ru/files/journal/XLIII/MathMontXLII
I-Ershov.pdf

[16] Alhaija, Hassan Abu, et al. Augmented reality
meets computer vision: Efficient data generation
for urban driving scenes. // International Journal of
Computer Vision 126.9 (2018): 961-972.

[17] Dosovitskiy, Alexey, et al. Flownet: Learning
optical flow with convolutional networks. //
Proceedings of the IEEE international conference
on computer vision. 2015.

[18] Varol, Gul, et al. Learning from synthetic humans.
// Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017.

[19] Chen, Wenzheng, et al. Synthesizing training
images for boosting human 3d pose estimation. //
2016 Fourth International Conference on 3D Vision
(3DV). IEEE, 2016.

[20] Tobin, Josh, et al. Domain randomization for
transferring deep neural networks from simulation
to the real world. // 2017 IEEE/RSJ international
conference on intelligent robots and systems
(IROS). IEEE, 2017

[21] Prakash, Aayush, et al. Structured domain
randomization: Bridging the reality gap by context-
aware synthetic data. // 2019 International
Conference on Robotics and Automation (ICRA).
IEEE, 2019

[22] Mitash, Chaitanya, Kostas E. Bekris, and Abdeslam
Boularias. A self-supervised learning system for
object detection using physics simulation and
multi-view pose estimation. // 2017 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017.

[23] Fremont, Daniel J., et al. Scenic: a language for
scenario specification and scene generation. //
Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and
Implementation. 2019

[24] Armeni, Iro, et al. 3D Scene Graph: A Structure for
Unified Semantics, 3D Space, and Camera. //
Proceedings of the IEEE International Conference
on Computer Vision. 2019

[25] Jiang, Chenfanfu, et al. "Configurable 3d scene
synthesis and 2d image rendering with per-pixel
ground truth using stochastic grammars."
International Journal of Computer Vision 126.9
(2018): 920-941.

[26] Kar, Amlan, et al. Meta-sim: Learning to generate
synthetic datasets. // Proceedings of the IEEE
International Conference on Computer Vision.
2019.

[27] Hoffman, Judy, et al. Cycada: Cycle-consistent
adversarial domain adaptation. // arXiv preprint
arXiv:1711.03213 (2017).

[28] French, Geoffrey, Michal Mackiewicz, and Mark
Fisher. Self-ensembling for visual domain
adaptation. // arXiv preprint arXiv:1706.05208
(2017)

[29] Ray Tracing Systems, Keldysh Institute of Applied
Mathematics, Moscow State Uiversity. Hydra
Renderer. Open source rendering system, 2019,
https://github.com/Ray-Tracing-Systems/HydraAPI

[30] V.V. Sanzharov, V.F. Frolov. Level of Detail for
Precomputed Procedural Textures // Programming
and Computer Software, 2019, V. 45, Issue 4, pp.
187-195 DOI:10.1134/S0361768819040078

[31] Natron, Open Source Compositing Software For
VFX and Motion Graphics
https://natrongithub.github.io/

[32] A.E. Bondarev. On visualization problems in a
generalized computational experiment (2019).
Scientific Visualization 11.2: 156 - 162, DOI:
10.26583/sv.11.2.12 (Scopus) http://www.sv-
journal.org/2019-2/12/

[33] Chang, Angel X., et al. "Shapenet: An information-
rich 3d model repository." arXiv preprint
arXiv:1512.03012 (2015).

About the authors
Vadim Sanzharov, senior lecturer, Gubkin Russian State

University of Oil and Gas. E-mail: vs@asugubkin.ru.
Vladimir Frolov, PhD, senior researcher at Keldysh

Institute of Applied mathematics RAS, researcher at Moscow
State University.

Alexey Voloboy, D.Sc., PhD, leading researcher at
Keldysh Institute of Applied mathematics RAS.

https://lppm3.ru/files/journal/XLIII/MathMontXLIII-Ershov.pdf
https://lppm3.ru/files/journal/XLIII/MathMontXLIII-Ershov.pdf
https://github.com/Ray-Tracing-Systems/HydraAPI
https://natrongithub.github.io/
mailto:vs@asugubkin.ru

	1. Introduction
	2. Related Work
	3. Proposed solution
	4. Object appearance variation techniques
	5. Results and conclusion
	6. References:
	About the authors

