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Since the creation of computers, there has been a lingering problem of data storing and creation for various tasks. In terms of 

computer graphics and video games, there has been a constant need in assets. Although nowadays the issue of space is not one of the 
developers' prime concerns, the need in being able to automate asset creation is still relevant. The graphical fidelity, that the modern 
audiences and applications demand requires a lot of work on the artists' and designers' front, which costs a lot. The automatic 
generation of 3D scenes is of critical importance in the tasks of Artificial Intelligent (AI) robotics training, where the amount of 
generated data during training cannot even be viewed by a single person due to the large amount of data needed for machine learning 
algorithms. A completely separate, but nevertheless necessary task for an integrated solution, is furniture generation and placement, 
material and lighting randomisation. In this paper we propose interior generator for computer graphics and robotics learning 
applications. The suggested framework is able to generate and render interiors with furniture at photo-realistic quality. We combined 
the existing algorithms for generating plans and arranging interiors and then finally add material and lighting randomization. Our 
solution contains semantic database of 3D models and materials, which allows generator to get realistic scenes with randomization 
and per-pixel mask for training detection and segmentation algorithms. 
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1. Introduction 

Since the creation of computers, there has been a 
lingering problem of data storing and creation for various 
tasks. In terms of computer graphics and video games, 
there has been a constant need in assets. Although 
nowadays the issue of space is not one of the developers' 
prime concerns, the need in being able to automate asset 
creation is still relevant. The graphical fidelity, that the 
modern audiences and applications demand requires a lot 
of work on the artists' and designers' front, which costs a 
lot. The automatic generation of 3D scenes is of critical 
importance in the tasks of Artificial Intelligent (AI) 
robotics training, where the amount of generated data 
during training cannot even be viewed by a single person 
due to the large amount of data needed for machine 
learning algorithms. A completely separate, but 
nevertheless necessary task for an integrated solution, is 
furniture generation and placement, material and lighting 
randomisation.  

A number of industries use virtual reproductions of 
indoor scenes: interior design, architecture, gaming and 
virtual reality are a few. A computer model that 
understood the structure of such scenes well enough to 
generate new ones could support such industries by 
enabling fully or semi-automatic population of indoor 
environments. 

Since development of neural networks algorithms, 
there is a big problem with creating training data sets. 
Computer vision and robotics researchers have begun 
turning to virtual environments to train data-hungry 
models for scene understanding and autonomous 
navigation. So indoor scene synthesis could also be used 
to automatically synthesize large-scale virtual training 
data for various vision and robotics tasks. 

2. Related work (plan generation) 
Interior layout generation can be divided into three 

main subtasks: plan, layout generation and 3D content 
generation. By "plan" we are going to implicate a general 

representation of a storey, that describes the types of 
rooms, their dimensions and possible neighboring 
chambers that is stored in a separate datafile. The 
"Layout" is the final blueprint showing all rooms being 
accurately placed and connected. 

Plan generation can be done either by the means of 
machine learning [1], or by creating a general list of room 
placement that will be used to randomly assemble the 
result [2]. Depending on the type of layout constructor 
the rules can be either strict or be more of a loose 
guideline. 

Layout assembly is the most complicated task of the 
three. The idea is to take a predetermined area (except for 
some cases) and separate it into subareas based on the 
previously generated plan. There has been developed a 
lot of different ways to solve this problem over the years, 
some of which are listed below.  

Tiling  

"Tiling" approach works similar to a toy constructors. 
It represents abstracts the whole area with small equal-
sized chunks [3]. These pieces are usually placed in a 
grid and the process of layout generation comes down to 
placing the tiles in an appropriate manner. The blocks do 
not contain any information about rooms and are merely 
used for determining the overall shape. 

Most grid based modern computer games [4, 5] 
nowadays use tiles for constructing environments to 
provide immense replay-ability and moderate challenge 
to the players. The method is also popular among 
independent developers since it allows to easily create 
level geometry and graphics on a tight budget. The 
advantage of tiling approach is simplicity and 
universality: tile primitives can be used in other methods 
for basic building blocks. The drawbacks are clearly 
visible structure of resulting model and difficulties with 
smaller then tile size objects. 
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Dense packing 

"Dense packing" method makes of use of rooms with 
predetermined shapes and sizes and attempts to place 
them within a confined space with preset dimensions in 
an optimal manner [6]. It is based on a class of 
optimization problems with the same name. Rooms can 
be represented with tiles for ease of modeling. The 
advantage of ths method is that it based on a well-known 
mathematical problem and a lot of different solution have 
been developed for it. It also useful when particular size 
of rooms is required. The main disadvantage is that 
algorithm may require to regenerate room if placing them 
in the area is impossible and thus final solution may take 
a lot of time not even taking into account optimization 
problem complexity. 

Growth 

"Growth" algorithm is done in three phases [7]. In 
preparation the area is divided into small sections like 
tiles, each given an initial numeric value. Then the 
"seeds" of each section/room are subsequently planted in 
positions with highest values, each changing the numbers 
on the grid based on probabilities of other room types 
being adjacent. The rooms are later iteratively grown 
around their origin in a rectangular manner. All unused 
space is latter consumed by existing chambers. An 
advantage is straightforward implementation and 
possibility to work with non-rectangular shapes of target 
space. The main disadvantage of the algorithm is the 
inability to control the size of the rooms.  

Inside-out 

"Inside-out" approach (known as "growth" in some 
sources) is based on placing rooms in an optimal manner, 
succeeded with creating the outer wall of the house based 
on resulting shape [8]. The act placing rooms can be 
implemented in different ways. For example, the 
algorithm can choose the first primary chamber and place 
other rooms around it. This algorithms does not restrict 
the resulting area size and shape and adjacent rooms can 
be calculated and placed more accurately. However, 
chambers can be placed in an unoptimized manner 
resulting in visible gaps and the outer shape can turn out 
to be unrealistic. 

Treemap 

Other set of methods is performed by representing the 
floor plan as a graph and then recursively dividing the 
rectangle area into subsections until all rooms are placed 
[9]. One of the implementations requires building a 
treemap (hence the name) of the graph from a rectangle 
area. This approach works reliably on office building. 
Disadvantage of algorithms is that it can generate rooms 
with weird proportions, which however can be rectified 
by using a squarified treemap. 

Machine learning approaches 

"Machine learning" way is centered around building a 
Generative Adversarial Network (GAN) that generates 
floor based on a set of predefined layouts [1]. It consists 

of two networks: one generates layouts based on random 
noise, while the other compares the result to existing 
layout to determine whether it is appropriate. The most 
significant advantage of machine learning approach is 
that it unlike other methods takes social aspects into 
account by default. The disadvantage of such approach is 
that training data-sets are required which is fundamental 
problem.  

3. Related work (furniture placement) 
Early works in this field uses simple statistical 

relationships between objects [10]. The next step was a 
data-driven scene synthesis: learning priors over object 
occurrence and arrangement from examples. The first 
such method learned separate priors for occurrence and 
arrangement [11] but is limited to small scale scenes due 
to the limited availability of training data and the learning 
methods available at the time. Various related methods 
have been proposed, modeling object occurrence directed 
graphical models combined with Gaussian mixture 
arrangement patterns [12], and activity-based object 
relation graphs [13].  

With the availability of large dataset of indoor virtual 
scenes such as SUNCG [14], new data-driven methods 
have been proposed. [15] uses a directed graphical model 
for object selection but relies on heuristics for object 
layout. [16] uses a probabilistic grammar to model 
scenes, but also requires data about human activity in 
scenes (not readily available in all datasets) as well as 
manual annotation of important object groups.  

The most relevant papers at the moment use deep 
convolutional networks to learn priors over which objects 
should be in a scene and how they should be arranged 
[17] uses deep CNN that operate on top-down image 
representations of scene and synthesises scenes by 
sequential placing objects. [18] this paper utilise the same 
idea but reduces amount of inference steps.  

Training synthetic data from virtual indoor scenes 
quickly becoming an essential source of learning data for 
computer vision and robotics systems. Several recent 
works have shown that indoor scene understanding 
models can be improved by training on large amounts of 
synthetically-generated images from virtual indoor 
scenes. At the intersection of vision and robotics, 
researchers working on visual navigation often rely on 
virtual indoor environments. Our model can complement 
these simulators by automatically generating new 
environments in which to train such intelligent visual 
reasoning agents.  

Recently there was published a novel dataset for 
training and bench-marking semantic SLAM methods 
[19] based on SUNCG dataset rendered with ambient 
occlusion and photon mapping. Authors of [19] mainly 
focus on sampling trajectories that simulate motions of a 
simple home robot.  

4. Suggested approach 
The main difference of our work is that our system 

works not only with separate rooms, but is also capable 
of creating the layout of buildings itself and then fill 
rooms with necessary filling, which can be useful both in 



 

the field of architecture and in generating a large amount 
of synthetic data for training. It also supports different 
lighting and material models, which makes the result 
photo-realistic. 

Floor (plan) generation 

The first route we have taken was a mix of "dense 
packing" [6] and "inside-out" [8] methods. A floor plan 
was generated based on input rules and room sizes in 
JSON format, then approximate dimensions for the first 
floor were calculated. Based on them the packing 
algorithm tried to fill the area with rooms, ending by 
drawing the outer wall around the layout and proceeding 
to the next floor. Instead of tiles it used a rectangle room 
of arbitrary size as a primitive. 

1) Plan generation algorithm 
This solution is based on some real-world knowledge 

and can be further developed to be more realistic. All the 
random distributions, used throughout the algorithm, 
have been assembled into a database manually. 
1. The algorithm start with random number of floors 

and rooms of different types. 
2. It checks whether there are enough rooms of each 

required type (for example bathrooms). Otherwise it 
goes to step 1. 

3. Rooms are randomly distributed across floors, 
assigning specific dimensions to them. It also 
ensures that each floor has at least one bathroom. In 
addition, it adds a ladder in each floor, except for the 
last one. 

4. The algorithm goes to step 3. 
o If some floors are empty 
o If the floor above is larger than the floor below 
o If some floors do not contain rooms except for 

bathrooms. 
5. If the generation takes too long it goes back to step 1. 
6. It goes through room floor-by-floor and randomly 

links them together. 
An example of the resulting file: 
"floor 1": { 

"bathroom 1": { 
"X": 8, 
"Y": 6 

}, 
"link 1": "bedroom-living room", 
"living room 1": { 

"X": 92, 
"Y": 61 

} 
2) Layout assembly algorithm 
The implementation is based upon Blender and uses 

its API to generate final 3D layout and uses simple auto-
generated shapes to approximate objects. 
1. The algorithm goes through the plan we generated 

previously floor by floor. 
2. It searches for linked rooms and assembles them into 

clusters. Each cluster gets its overall space calculated 
and the chambers then placed based on a simplified 
dense-packing algorithm. 

3. Clusters, single rooms and a ladder are then packed 
within floor space similarly to step 2. 

4. The outer wall is drawn around the structure, 
generated above. 

5. The algorithm moves to the next floor. This time, the 
floor space is reduced by the space of the ladder 
from the previous floor and a hole is placed above it. 

Thus, our implementation has further advantages: 
First it gain highly variable and realistic results, but it is 
more flexible than the Machine Learning approaches 
since it does not require gathering real data to get realistic 
layouts. Next, we can generate multi-store building with 
connecting ladders and finally, we support for non-
rectangle room and floor shapes. However, our 
implementation has several restrictions: 
1. Adding new rules (feeding as input) for plan 

generation can be rather challenging due to them 
being coupled together 

2. The walls colliding with each other resulted in a 
visual glitch, that was hard to deal with. 

3. In comparison to tile based methods our algorithm 
has difficulties with adding detailed geometry details 
to architectural elements: while tile based methods 
efficiently uses baked/precomputed geometry for 
windows, doors and e.t.c, our approach requires such 
geometry to be generated in the fly automatically for 
target layouts which is not trivial task generally 
speaking.  

Furniture layout 

For the first approximation of the creation of a virtual 
interior scene, a rather simple algorithm was selected for 
the layout of office furniture in the room.  

1) Rotation layout algorithm. The idea is simple: 
traverse the edges of the office’s perimeter. If the edge is 
shorter than the width of a desk, ignore it - a constraint 
relaxed in some of our other algorithms. If it is 
sufficiently long to place a desk, start from one end of the 
edge and lay down as many desks as possible along that 
edge. This algorithm is run three times with the only 
difference being the order in which the edges are 
traversed: 

1.1) Clockwise: start from the edge left of the main 
door and run clockwise along the perimeter. 

1.2) Counterclockwise: start from the edge right of 
the main door and run counter-clockwise along the 
perimeter. 

1.3) Sort by length: sort the edges by length and 
process them from longest to shortest. 

2) Left-right layout algorithm 
The left right layout algorithm is very similar to the 

rotation algorithm. However, there are two key 
differences. First, it traverses all the sufficiently long 
edges to the left of the door edge first and then the edges 
to the right of the door; left and right are determined by 
taking a line perpendicular to the door edge, running 
through its center. Second, when laying down desks, it 
always works from the bottom up so that the resulting 
layout tends to be more symmetrical and closer to how 
our architects tend to lay out desks. 



 

The left right layout algorithm is run twice. The first 
time we enforce that desks must be completely touching 
the wall and cannot hang off a short wall such as a 
mullion. That is, we ignore all walls that are less than 
desk width long (as described above). However, many 
offices have indentations, columns, and other edge 
conditions resulting in walls less than desk width length. 
Consequently, we run the algorithm again but this time 
we attempt to lay down desks on all edges, irrespective of 
their length, and we allow a desk to overhang an edge. 
After all the algorithms have been run, the code 
determines the highest capacity found. 

3) Brute force layout algorithm 

The brute force layout algorithm is roughly two 
orders of magnitude more computationally expensive and 
so is only run when the above perimeter-based algorithms 
do not sufficiently fill the space. 

This algorithm assumes that for each edge, desks are 
either placed in a line facing the wall (FW) or they exist 
as a set of back-to-back bank of desks extending into the 
space.  

The question is which edges should be set as back-to-
back? As there are no obvious heuristics, we take a brute 
force approach, trying all possible combinations with 
one, two, or three edges designated as back-to-back and 
the remaining edges wall-facing. The examples of our 
algorithm can be found at fig. 1. 

 

 
Fig. 1. Examples of generated basic 3d models of interior layout (left) and our results of our furniture placement algorithm (right) 

 
We also try a variant where, for each edge that is 

longer than desk width, we consider three options: no 
desks, face wall, and back to back. The “no desks” option 
can be useful to allow a bank of desks on other walls to 
grow.  

Unfortunately, having three options per wall leads to 
a combinatorial explosion in which the number of 
combinations to try grows very quickly with the number 
of walls. Thus, we only use this option if the number of 
walls longer than desk width is 4 or less because 34=81, 
which is manageable, and 35=243 which is too many for 
current computational resources.  

Materials, lighting and rendering 

This was actually one of the most time consuming 
problems we have to solve. The serious difficulties are 
concentrated around the fact that modern rendering 
systems use exclusively their own lighting and material 
models which is inconsistent with others. The realistic 
looking computer graphics content is created for the 
target rendering system and cannot be used directly in 
others. So, there is no such thing as open data bases of 
realistic 3d models due to importing/exporting 3D 
content from one rendering system to another is not 
trivial task. Taking in to account the fact of required 
randomization we had to build our own content creation 
pipeline to adopt existing 3D models. For this purpose, 
we used GPU accelerated open source Hydra Renderer 
[20]. We chose this solution because it is one of the few 

open rendering systems that has a full-fledged industrial 
level pipeline for creating content (with material 
conversion scripts from other popular rendering systems: 
VRay, Mental, Corona), while the rendering engine itself 
has high performance and works completely on GPU as 
well in Windows and Linux which is essential for 
training data sets generation due to large amount of 
required images and available Linux servers with GPUs.  

For the purpose of material and lighting 
randomization we have adjusted the work of the artist for 
randomized content creation via custom 3ds max plugins 
that help artist to setup randomized materials and assign 
them to object parts (fig. 2). The artist determines the 
logic of randomization by 
setting special material parameters (fig. 2) which will 
later be exported to SQL-based database. This allows us 
to limit randomization and make it realistic in 
average. For example, “Target” parameter (fig. 3, down 
and left) acquiring some definite value allows to use this 
material only on a specific part of a certain class of 
models. We didn’t choose any modern AI based or 
automatic methods for 3D content generator purpose 
because our main requirement is high degree of control 
over the generated result and this is a problem for neural 
network based methods. Finally, we have created export 
tool that automatically adds all created 3d Models in our 
SQL-based database and then created 3D model 
randomizer based on this database (see fig. 4). 

 



 

 
Fig. 2. Our randomization material plugin GUI and check for artist in 3ds max. This is essential for randomized results to 
be realistic in the target application due to artist could check whether customized distribution works in expected way or 

not 
 

 
Fig. 3. Examples of randomized furniture objects from our database 

 

 
Fig. 4. Early version of our furniture placement algorithm that was prototyped in Unity 

 
Generating datasets 

We used python scripts to run a specific generation 
scenario on the Linux server with 8 K100 GPUs. In fact, 
this process was not automatic because CV engineers ask 

very different scenarios for their experiments each time. 
Scripts run different parts of our generator (floor plan, 
furniture layout or picking 3D models from database) and 
connect everything together via files. Our solution is able 
to generate approximately 10 images per hour on a single 



 

GPU and thus ~2 days is usually needed to generate full 
training dataset.  

5. Conclusion and future work 
In this paper we have presented procedural house 

interior generator that is able to produce interior images 
with high quality and speed. The example of generated 
interiors can be found at fig.5-7. However, we were not 
able to build complete industrial-level solution. Our 
system is highly fragmented connecting everything 
together with scripts and files, and the biggest problem is 
that these scripts actually have to be changed (sometimes 
mostly created from scratch) for each dataset generation 

scenario due to CV engineer’s requests are very different 
in practice. Despite the fact that we can generate full 
dataset in 2 days, it takes us about 2 weeks to create new 
scripting scenario and debug it with the full pipeline. So 
we believe that using real-time rendering engines for 
training AI in practice is almost useless for today: the 
bottleneck is always in human-beings. Nevertheless, 
going all the way towards realistic 3D generator and 
rendering for AI training we would like to share our 
experience and state a set of problems which are, in 
general, not solved for today since this area of research is 
quite new and thus during our work we got more 
questions than answers. 

 

 
Fig. 5. Example of render (top left), generated layout (top right), objects masks (bottom left) and object masks from in layout view 

(bottom right) 

 
Fig. 6. Another examples of rendered interior layouts and object masks 

 



 

 
Fig. 7. Examples of different randomization result for single furniture layout and object masks 

 
Tightly integrated framework 

In our case at least 3 different people participate in 
dataset generation process, they are: (1) artist, who 
should create and check input 3D content, (2) a scripting 
person who creates scenarios for generator and (3) CV 
engineer who control the result. These people need very 
different skills/knowledge and we don’t think that the 
number of participants can be reduced. However, their 
work could be organized better by putting them into a 
unit ecosystem with interface convenient for each 
participant. Our 3ds max plugins is the first step towards 
this direction, but in general this is an open problem even 
for a restricted area of AI training.  

We used python scripts to run a specific generation 
scenario on the Linux server with 8 K100 GPUs. In fact, 
this process was not automatic because CV engineers ask 
very different scenarios for their experiments each time. 
Scripts run different parts of our generator (floor plan, 
furniture layout or picking 3D models from database) and 
connect everything together via files. Our solution is able 
to generate approximately 10 images per hour on a single 
GPU and thus ~2 days is usually needed to generate full 
training dataset.  

Unoptimized data path, memory and disk 
bottleneck 

In our case different algorithms (for example floor 
plan generation and further 3D model construction, or 
renderer output and further Natron post process) is 
communicated via files. Linux cache and fast SSD on 
server amortize this problem, but only a little. According 

to our estimates any object like mesh or image is copied 
from 4 to 6 times on average due to loading, storing in 
memory, putting to GPU or saving back to disk in 
different formats. This format conversion madness makes 
useless any attempts to speed up rendering in practice. 
However, we were able to optimize this process for some 
cases when we have formed scene library and put it to 
GPU once (i. e. we don’t load new 3D models or images 
to GPU for several subsequent frames). This gives 
essential benefit even for our prototype with off-line 
rendering, but it is of critical importance for systems 
that’s is going to use real-time rendering. We believe that 
generation scenario should take care of that problem in 
combination with some caching system and feeding the 
generated images directly to the neural network on the 
same GPU without storing it to disk (except small part of 
them for debug cases). We also suppose that modern 
denoising algorithms [21] could significantly accelerate 
generation process. 

Absence of rendering standards and open 3D 
content  

Available base of 3D models (like well-known 
ShapeNet) is not ready even for rendering: their quality is 
low and segmentation of parts by materials is rough. In 
the case of randomizing materials, we need to manually 
process them anyway and assign relation to our data base. 
Recent story with SUNCG [19] (which is far from 
photorealistic quality anyway) confirms the need of the 
open content libraries.  



 

Procedural approaches 

Unfortunately, in this work we did not manage to use 
procedural approaches [22] for textures, which could 
additionally increase the variability of the generated 
content. 
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