
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY
4.0)

Procedural interior generation for artificial intelligence training and
computer graphics

E. D. Feklisov1, M. V. Zingerenko1, V. A. Frolov1,2, M. A. Trofimov1
egor.feklisov@gmail.com | liahimzer@gmail.com

1Moscow State University, Moscow, Russia;
2Keldysh Institute of Applied Mathematics

Since the creation of computers, there has been a lingering problem of data storing and creation for various tasks. In terms of

computer graphics and video games, there has been a constant need in assets. Although nowadays the issue of space is not one of the
developers' prime concerns, the need in being able to automate asset creation is still relevant. The graphical fidelity, that the modern
audiences and applications demand requires a lot of work on the artists' and designers' front, which costs a lot. The automatic
generation of 3D scenes is of critical importance in the tasks of Artificial Intelligent (AI) robotics training, where the amount of
generated data during training cannot even be viewed by a single person due to the large amount of data needed for machine learning
algorithms. A completely separate, but nevertheless necessary task for an integrated solution, is furniture generation and placement,
material and lighting randomisation. In this paper we propose interior generator for computer graphics and robotics learning
applications. The suggested framework is able to generate and render interiors with furniture at photo-realistic quality. We combined
the existing algorithms for generating plans and arranging interiors and then finally add material and lighting randomization. Our
solution contains semantic database of 3D models and materials, which allows generator to get realistic scenes with randomization
and per-pixel mask for training detection and segmentation algorithms.

Keywords: procedural generation, machine learning, AI training, light-processing, tesselation, modeling

1. Introduction

Since the creation of computers, there has been a
lingering problem of data storing and creation for various
tasks. In terms of computer graphics and video games,
there has been a constant need in assets. Although
nowadays the issue of space is not one of the developers'
prime concerns, the need in being able to automate asset
creation is still relevant. The graphical fidelity, that the
modern audiences and applications demand requires a lot
of work on the artists' and designers' front, which costs a
lot. The automatic generation of 3D scenes is of critical
importance in the tasks of Artificial Intelligent (AI)
robotics training, where the amount of generated data
during training cannot even be viewed by a single person
due to the large amount of data needed for machine
learning algorithms. A completely separate, but
nevertheless necessary task for an integrated solution, is
furniture generation and placement, material and lighting
randomisation.

A number of industries use virtual reproductions of
indoor scenes: interior design, architecture, gaming and
virtual reality are a few. A computer model that
understood the structure of such scenes well enough to
generate new ones could support such industries by
enabling fully or semi-automatic population of indoor
environments.

Since development of neural networks algorithms,
there is a big problem with creating training data sets.
Computer vision and robotics researchers have begun
turning to virtual environments to train data-hungry
models for scene understanding and autonomous
navigation. So indoor scene synthesis could also be used
to automatically synthesize large-scale virtual training
data for various vision and robotics tasks.

2. Related work (plan generation)
Interior layout generation can be divided into three

main subtasks: plan, layout generation and 3D content
generation. By "plan" we are going to implicate a general

representation of a storey, that describes the types of
rooms, their dimensions and possible neighboring
chambers that is stored in a separate datafile. The
"Layout" is the final blueprint showing all rooms being
accurately placed and connected.

Plan generation can be done either by the means of
machine learning [1], or by creating a general list of room
placement that will be used to randomly assemble the
result [2]. Depending on the type of layout constructor
the rules can be either strict or be more of a loose
guideline.

Layout assembly is the most complicated task of the
three. The idea is to take a predetermined area (except for
some cases) and separate it into subareas based on the
previously generated plan. There has been developed a
lot of different ways to solve this problem over the years,
some of which are listed below.

Tiling

"Tiling" approach works similar to a toy constructors.
It represents abstracts the whole area with small equal-
sized chunks [3]. These pieces are usually placed in a
grid and the process of layout generation comes down to
placing the tiles in an appropriate manner. The blocks do
not contain any information about rooms and are merely
used for determining the overall shape.

Most grid based modern computer games [4, 5]
nowadays use tiles for constructing environments to
provide immense replay-ability and moderate challenge
to the players. The method is also popular among
independent developers since it allows to easily create
level geometry and graphics on a tight budget. The
advantage of tiling approach is simplicity and
universality: tile primitives can be used in other methods
for basic building blocks. The drawbacks are clearly
visible structure of resulting model and difficulties with
smaller then tile size objects.

mailto:egor.feklisov@gmail.com
mailto:liahimzer@gmail.com

Dense packing

"Dense packing" method makes of use of rooms with
predetermined shapes and sizes and attempts to place
them within a confined space with preset dimensions in
an optimal manner [6]. It is based on a class of
optimization problems with the same name. Rooms can
be represented with tiles for ease of modeling. The
advantage of ths method is that it based on a well-known
mathematical problem and a lot of different solution have
been developed for it. It also useful when particular size
of rooms is required. The main disadvantage is that
algorithm may require to regenerate room if placing them
in the area is impossible and thus final solution may take
a lot of time not even taking into account optimization
problem complexity.

Growth

"Growth" algorithm is done in three phases [7]. In
preparation the area is divided into small sections like
tiles, each given an initial numeric value. Then the
"seeds" of each section/room are subsequently planted in
positions with highest values, each changing the numbers
on the grid based on probabilities of other room types
being adjacent. The rooms are later iteratively grown
around their origin in a rectangular manner. All unused
space is latter consumed by existing chambers. An
advantage is straightforward implementation and
possibility to work with non-rectangular shapes of target
space. The main disadvantage of the algorithm is the
inability to control the size of the rooms.

Inside-out

"Inside-out" approach (known as "growth" in some
sources) is based on placing rooms in an optimal manner,
succeeded with creating the outer wall of the house based
on resulting shape [8]. The act placing rooms can be
implemented in different ways. For example, the
algorithm can choose the first primary chamber and place
other rooms around it. This algorithms does not restrict
the resulting area size and shape and adjacent rooms can
be calculated and placed more accurately. However,
chambers can be placed in an unoptimized manner
resulting in visible gaps and the outer shape can turn out
to be unrealistic.

Treemap

Other set of methods is performed by representing the
floor plan as a graph and then recursively dividing the
rectangle area into subsections until all rooms are placed
[9]. One of the implementations requires building a
treemap (hence the name) of the graph from a rectangle
area. This approach works reliably on office building.
Disadvantage of algorithms is that it can generate rooms
with weird proportions, which however can be rectified
by using a squarified treemap.

Machine learning approaches

"Machine learning" way is centered around building a
Generative Adversarial Network (GAN) that generates
floor based on a set of predefined layouts [1]. It consists

of two networks: one generates layouts based on random
noise, while the other compares the result to existing
layout to determine whether it is appropriate. The most
significant advantage of machine learning approach is
that it unlike other methods takes social aspects into
account by default. The disadvantage of such approach is
that training data-sets are required which is fundamental
problem.

3. Related work (furniture placement)
Early works in this field uses simple statistical

relationships between objects [10]. The next step was a
data-driven scene synthesis: learning priors over object
occurrence and arrangement from examples. The first
such method learned separate priors for occurrence and
arrangement [11] but is limited to small scale scenes due
to the limited availability of training data and the learning
methods available at the time. Various related methods
have been proposed, modeling object occurrence directed
graphical models combined with Gaussian mixture
arrangement patterns [12], and activity-based object
relation graphs [13].

With the availability of large dataset of indoor virtual
scenes such as SUNCG [14], new data-driven methods
have been proposed. [15] uses a directed graphical model
for object selection but relies on heuristics for object
layout. [16] uses a probabilistic grammar to model
scenes, but also requires data about human activity in
scenes (not readily available in all datasets) as well as
manual annotation of important object groups.

The most relevant papers at the moment use deep
convolutional networks to learn priors over which objects
should be in a scene and how they should be arranged
[17] uses deep CNN that operate on top-down image
representations of scene and synthesises scenes by
sequential placing objects. [18] this paper utilise the same
idea but reduces amount of inference steps.

Training synthetic data from virtual indoor scenes
quickly becoming an essential source of learning data for
computer vision and robotics systems. Several recent
works have shown that indoor scene understanding
models can be improved by training on large amounts of
synthetically-generated images from virtual indoor
scenes. At the intersection of vision and robotics,
researchers working on visual navigation often rely on
virtual indoor environments. Our model can complement
these simulators by automatically generating new
environments in which to train such intelligent visual
reasoning agents.

Recently there was published a novel dataset for
training and bench-marking semantic SLAM methods
[19] based on SUNCG dataset rendered with ambient
occlusion and photon mapping. Authors of [19] mainly
focus on sampling trajectories that simulate motions of a
simple home robot.

4. Suggested approach
The main difference of our work is that our system

works not only with separate rooms, but is also capable
of creating the layout of buildings itself and then fill
rooms with necessary filling, which can be useful both in

the field of architecture and in generating a large amount
of synthetic data for training. It also supports different
lighting and material models, which makes the result
photo-realistic.

Floor (plan) generation

The first route we have taken was a mix of "dense
packing" [6] and "inside-out" [8] methods. A floor plan
was generated based on input rules and room sizes in
JSON format, then approximate dimensions for the first
floor were calculated. Based on them the packing
algorithm tried to fill the area with rooms, ending by
drawing the outer wall around the layout and proceeding
to the next floor. Instead of tiles it used a rectangle room
of arbitrary size as a primitive.

1) Plan generation algorithm
This solution is based on some real-world knowledge

and can be further developed to be more realistic. All the
random distributions, used throughout the algorithm,
have been assembled into a database manually.
1. The algorithm start with random number of floors

and rooms of different types.
2. It checks whether there are enough rooms of each

required type (for example bathrooms). Otherwise it
goes to step 1.

3. Rooms are randomly distributed across floors,
assigning specific dimensions to them. It also
ensures that each floor has at least one bathroom. In
addition, it adds a ladder in each floor, except for the
last one.

4. The algorithm goes to step 3.
o If some floors are empty
o If the floor above is larger than the floor below
o If some floors do not contain rooms except for

bathrooms.
5. If the generation takes too long it goes back to step 1.
6. It goes through room floor-by-floor and randomly

links them together.
An example of the resulting file:
"floor 1": {

"bathroom 1": {
"X": 8,
"Y": 6

},
"link 1": "bedroom-living room",
"living room 1": {

"X": 92,
"Y": 61

}
2) Layout assembly algorithm
The implementation is based upon Blender and uses

its API to generate final 3D layout and uses simple auto-
generated shapes to approximate objects.
1. The algorithm goes through the plan we generated

previously floor by floor.
2. It searches for linked rooms and assembles them into

clusters. Each cluster gets its overall space calculated
and the chambers then placed based on a simplified
dense-packing algorithm.

3. Clusters, single rooms and a ladder are then packed
within floor space similarly to step 2.

4. The outer wall is drawn around the structure,
generated above.

5. The algorithm moves to the next floor. This time, the
floor space is reduced by the space of the ladder
from the previous floor and a hole is placed above it.

Thus, our implementation has further advantages:
First it gain highly variable and realistic results, but it is
more flexible than the Machine Learning approaches
since it does not require gathering real data to get realistic
layouts. Next, we can generate multi-store building with
connecting ladders and finally, we support for non-
rectangle room and floor shapes. However, our
implementation has several restrictions:
1. Adding new rules (feeding as input) for plan

generation can be rather challenging due to them
being coupled together

2. The walls colliding with each other resulted in a
visual glitch, that was hard to deal with.

3. In comparison to tile based methods our algorithm
has difficulties with adding detailed geometry details
to architectural elements: while tile based methods
efficiently uses baked/precomputed geometry for
windows, doors and e.t.c, our approach requires such
geometry to be generated in the fly automatically for
target layouts which is not trivial task generally
speaking.

Furniture layout

For the first approximation of the creation of a virtual
interior scene, a rather simple algorithm was selected for
the layout of office furniture in the room.

1) Rotation layout algorithm. The idea is simple:
traverse the edges of the office’s perimeter. If the edge is
shorter than the width of a desk, ignore it - a constraint
relaxed in some of our other algorithms. If it is
sufficiently long to place a desk, start from one end of the
edge and lay down as many desks as possible along that
edge. This algorithm is run three times with the only
difference being the order in which the edges are
traversed:

1.1) Clockwise: start from the edge left of the main
door and run clockwise along the perimeter.

1.2) Counterclockwise: start from the edge right of
the main door and run counter-clockwise along the
perimeter.

1.3) Sort by length: sort the edges by length and
process them from longest to shortest.

2) Left-right layout algorithm
The left right layout algorithm is very similar to the

rotation algorithm. However, there are two key
differences. First, it traverses all the sufficiently long
edges to the left of the door edge first and then the edges
to the right of the door; left and right are determined by
taking a line perpendicular to the door edge, running
through its center. Second, when laying down desks, it
always works from the bottom up so that the resulting
layout tends to be more symmetrical and closer to how
our architects tend to lay out desks.

The left right layout algorithm is run twice. The first
time we enforce that desks must be completely touching
the wall and cannot hang off a short wall such as a
mullion. That is, we ignore all walls that are less than
desk width long (as described above). However, many
offices have indentations, columns, and other edge
conditions resulting in walls less than desk width length.
Consequently, we run the algorithm again but this time
we attempt to lay down desks on all edges, irrespective of
their length, and we allow a desk to overhang an edge.
After all the algorithms have been run, the code
determines the highest capacity found.

3) Brute force layout algorithm

The brute force layout algorithm is roughly two
orders of magnitude more computationally expensive and
so is only run when the above perimeter-based algorithms
do not sufficiently fill the space.

This algorithm assumes that for each edge, desks are
either placed in a line facing the wall (FW) or they exist
as a set of back-to-back bank of desks extending into the
space.

The question is which edges should be set as back-to-
back? As there are no obvious heuristics, we take a brute
force approach, trying all possible combinations with
one, two, or three edges designated as back-to-back and
the remaining edges wall-facing. The examples of our
algorithm can be found at fig. 1.

Fig. 1. Examples of generated basic 3d models of interior layout (left) and our results of our furniture placement algorithm (right)

We also try a variant where, for each edge that is

longer than desk width, we consider three options: no
desks, face wall, and back to back. The “no desks” option
can be useful to allow a bank of desks on other walls to
grow.

Unfortunately, having three options per wall leads to
a combinatorial explosion in which the number of
combinations to try grows very quickly with the number
of walls. Thus, we only use this option if the number of
walls longer than desk width is 4 or less because 34=81,
which is manageable, and 35=243 which is too many for
current computational resources.

Materials, lighting and rendering

This was actually one of the most time consuming
problems we have to solve. The serious difficulties are
concentrated around the fact that modern rendering
systems use exclusively their own lighting and material
models which is inconsistent with others. The realistic
looking computer graphics content is created for the
target rendering system and cannot be used directly in
others. So, there is no such thing as open data bases of
realistic 3d models due to importing/exporting 3D
content from one rendering system to another is not
trivial task. Taking in to account the fact of required
randomization we had to build our own content creation
pipeline to adopt existing 3D models. For this purpose,
we used GPU accelerated open source Hydra Renderer
[20]. We chose this solution because it is one of the few

open rendering systems that has a full-fledged industrial
level pipeline for creating content (with material
conversion scripts from other popular rendering systems:
VRay, Mental, Corona), while the rendering engine itself
has high performance and works completely on GPU as
well in Windows and Linux which is essential for
training data sets generation due to large amount of
required images and available Linux servers with GPUs.

For the purpose of material and lighting
randomization we have adjusted the work of the artist for
randomized content creation via custom 3ds max plugins
that help artist to setup randomized materials and assign
them to object parts (fig. 2). The artist determines the
logic of randomization by
setting special material parameters (fig. 2) which will
later be exported to SQL-based database. This allows us
to limit randomization and make it realistic in
average. For example, “Target” parameter (fig. 3, down
and left) acquiring some definite value allows to use this
material only on a specific part of a certain class of
models. We didn’t choose any modern AI based or
automatic methods for 3D content generator purpose
because our main requirement is high degree of control
over the generated result and this is a problem for neural
network based methods. Finally, we have created export
tool that automatically adds all created 3d Models in our
SQL-based database and then created 3D model
randomizer based on this database (see fig. 4).

Fig. 2. Our randomization material plugin GUI and check for artist in 3ds max. This is essential for randomized results to
be realistic in the target application due to artist could check whether customized distribution works in expected way or

not

Fig. 3. Examples of randomized furniture objects from our database

Fig. 4. Early version of our furniture placement algorithm that was prototyped in Unity

Generating datasets

We used python scripts to run a specific generation
scenario on the Linux server with 8 K100 GPUs. In fact,
this process was not automatic because CV engineers ask

very different scenarios for their experiments each time.
Scripts run different parts of our generator (floor plan,
furniture layout or picking 3D models from database) and
connect everything together via files. Our solution is able
to generate approximately 10 images per hour on a single

GPU and thus ~2 days is usually needed to generate full
training dataset.

5. Conclusion and future work
In this paper we have presented procedural house

interior generator that is able to produce interior images
with high quality and speed. The example of generated
interiors can be found at fig.5-7. However, we were not
able to build complete industrial-level solution. Our
system is highly fragmented connecting everything
together with scripts and files, and the biggest problem is
that these scripts actually have to be changed (sometimes
mostly created from scratch) for each dataset generation

scenario due to CV engineer’s requests are very different
in practice. Despite the fact that we can generate full
dataset in 2 days, it takes us about 2 weeks to create new
scripting scenario and debug it with the full pipeline. So
we believe that using real-time rendering engines for
training AI in practice is almost useless for today: the
bottleneck is always in human-beings. Nevertheless,
going all the way towards realistic 3D generator and
rendering for AI training we would like to share our
experience and state a set of problems which are, in
general, not solved for today since this area of research is
quite new and thus during our work we got more
questions than answers.

Fig. 5. Example of render (top left), generated layout (top right), objects masks (bottom left) and object masks from in layout view

(bottom right)

Fig. 6. Another examples of rendered interior layouts and object masks

Fig. 7. Examples of different randomization result for single furniture layout and object masks

Tightly integrated framework

In our case at least 3 different people participate in
dataset generation process, they are: (1) artist, who
should create and check input 3D content, (2) a scripting
person who creates scenarios for generator and (3) CV
engineer who control the result. These people need very
different skills/knowledge and we don’t think that the
number of participants can be reduced. However, their
work could be organized better by putting them into a
unit ecosystem with interface convenient for each
participant. Our 3ds max plugins is the first step towards
this direction, but in general this is an open problem even
for a restricted area of AI training.

We used python scripts to run a specific generation
scenario on the Linux server with 8 K100 GPUs. In fact,
this process was not automatic because CV engineers ask
very different scenarios for their experiments each time.
Scripts run different parts of our generator (floor plan,
furniture layout or picking 3D models from database) and
connect everything together via files. Our solution is able
to generate approximately 10 images per hour on a single
GPU and thus ~2 days is usually needed to generate full
training dataset.

Unoptimized data path, memory and disk
bottleneck

In our case different algorithms (for example floor
plan generation and further 3D model construction, or
renderer output and further Natron post process) is
communicated via files. Linux cache and fast SSD on
server amortize this problem, but only a little. According

to our estimates any object like mesh or image is copied
from 4 to 6 times on average due to loading, storing in
memory, putting to GPU or saving back to disk in
different formats. This format conversion madness makes
useless any attempts to speed up rendering in practice.
However, we were able to optimize this process for some
cases when we have formed scene library and put it to
GPU once (i. e. we don’t load new 3D models or images
to GPU for several subsequent frames). This gives
essential benefit even for our prototype with off-line
rendering, but it is of critical importance for systems
that’s is going to use real-time rendering. We believe that
generation scenario should take care of that problem in
combination with some caching system and feeding the
generated images directly to the neural network on the
same GPU without storing it to disk (except small part of
them for debug cases). We also suppose that modern
denoising algorithms [21] could significantly accelerate
generation process.

Absence of rendering standards and open 3D
content

Available base of 3D models (like well-known
ShapeNet) is not ready even for rendering: their quality is
low and segmentation of parts by materials is rough. In
the case of randomizing materials, we need to manually
process them anyway and assign relation to our data base.
Recent story with SUNCG [19] (which is far from
photorealistic quality anyway) confirms the need of the
open content libraries.

Procedural approaches

Unfortunately, in this work we did not manage to use
procedural approaches [22] for textures, which could
additionally increase the variability of the generated
content.

References
[1] Merrell P., Schkufza E., Koltun V. Computer-

generated residential building layouts //ACM
SIGGRAPH Asia 2010 papers. – 2010. – С. 1-12.

[2] Bengtsson D., Melin J. Constrained procedural floor
plan generation for game environments. – 2016.

[3] Cerny Green M., Khalifa A., Alsoughayer A., Surana
D., Liapis A., Togelius J. Two-step Constructive
Approaches for Dungeon Generation. – 2019.

[4] Firaxis Games Sid Meier’s Civilization VI. - 2016.
[5] Triumph Studios Age of Wonders III. - 2014.
[6] Koenig R., Knecht K. Comparing two evolutionary

algorithm based methods for layout generation:
Dense packing versus subdivision. - 2014.

[7] Zifeng Guo, Biao Li Evolutionary approach for
spatial architecture layout design enhanced by an
agent-based topology finding system. - 2017.

[8] Martin J. Procedural House Generation: A method
for dynamically generating floor plans. - 2016.

[9] Fernando M. Automatic Real-Time Generation of
Floor Plans Based on Squarified Treemaps
Algorithm. - 2010.

[10] L.-F. Yu, S.-K. Yeung, C.-K. Tang, D. Terzopoulos,
T. F.Chan, and S. J. Osher. Make It Home:
Automatic Optimization of Furniture Arrangement.
In SIGGRAPH 2011, 2011.

[11] Matthew Fisher, Daniel Ritchie, Manolis Savva,
Thomas Funkhouser, and Pat Hanrahan. 2012.
Example-based Synthesis of 3D Object
Arrangements. In SIGGRAPH Asia 2012.

[12] Paul Henderson and Vittorio Ferrari. 2017. A
Generative Model of 3D Object Layouts in
Apartments

[13] Qiang Fu, Xiaowu Chen, Xiaotian Wang, Sijia Wen,
Bin Zhou, and Hongbo Fu. 2017. Adaptive Synthesis
of Indoor Scenes via Activity-associated Object
Relation Graphs.

[14] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva,
and T. Funkhouser. Semantic Scene Completion
from a Single D. Image.

[15] V. F. Paul Henderson, Kartic Subr. Automatic
Generation of Constrained Furniture Layouts.

[16] Qi, Siyuan and Zhu, Yixin and Huang, Siyuan and
Jiang, Chenfanfu and Zhu, Song-Chun. Human-
centric Indoor Scene Synthesis Using Stochastic
Grammar

[17] Kai Wang, Manolis Savva, Angel X. Chang, and
Daniel [Разрыв обтекания текста]Ritchie. Deep
Convolutional Priors for Indoor Scene Synthesis. In
SIGGRAPH 2018

[18] Daniel Ritchie, Kai Wang and Yu-an Lin. Fast and
Flexible Indoor Scene Synthesis via Deep
Convolutional Generative Models.

[19] Pavel Kirsanov, Airat Gaskarov, Filipp Konokhov,
Konstantin Sofiiuk, Anna Vorontsova, Igor Slinko,

Dmitry Zhukov, Sergey Bykov, Olga Barinova,
Anton Konushin. DISCOMAN: Dataset of Indoor
SCenes for Odometry, Mapping And Navigation.
arXiv:1909.12146. September 2019.

[20] Frolov V., Sanzharov V., Galaktionov V. Open
Source rendering system Hydra Renderer.
https://github.com/Ray-Tracing-Systems/HydraAPI

[21] S.V. Ershov, D.D. Zhdanov, A.G. Voloboy, V.A.
Galaktionov. Two denoising algorithms for bi-
directional Monte Carlo ray tracing // Mathematica
Montisnigri, Vol. XLIII, 2018, p. 78-100.
https://lppm3.ru/files/journal/XLIII/MathMontXLIII-
Ershov.pdf

[22] V.V. Sanzharov, V.F. Frolov. Level of Detail for
Precomputed Procedural Textures // Programming
and Computer Software, 2019, V. 45, Issue 4, pp.
187-195 DOI:10.1134/S0361768819040078

About the Authors
Egor Feklisov, student at Moscow State University, faculty

of Compute Mathematics and Cybernetics, Computer Graphics
and Multimedia lab. E-mail: egor.feklisov@gmail.com.

Mihail Zingerenko, student at Moscow State University,
faculty of Compute Mathematics and Cybernetics, Computer
Graphics and Multimedia lab. E-mail: liamhizer@gmail.com.

Vladimir Frolov, Ph. D researcher at Keldysh Institute of
Applies Mathematics and Moscow State University.

https://github.com/Ray-Tracing-Systems/HydraAPI
mailto:egor.feklisov@gmail.com
mailto:liamhizer@gmail.com

	1. Introduction
	2. Related work (plan generation)
	Tiling
	Dense packing
	Growth
	Inside-out
	Treemap
	Machine learning approaches

	3. Related work (furniture placement)
	4. Suggested approach
	Floor (plan) generation
	Furniture layout
	Materials, lighting and rendering
	Generating datasets

	5. Conclusion and future work
	Tightly integrated framework
	We used python scripts to run a specific generation scenario on the Linux server with 8 K100 GPUs. In fact, this process was not automatic because CV engineers ask very different scenarios for their experiments each time. Scripts run different parts o...
	Unoptimized data path, memory and disk bottleneck
	Absence of rendering standards and open 3D content
	Procedural approaches

	References
	About the Authors

