
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY
4.0)

Method of dynamic selection of regression tests during developing
multimodule information systems in conditions of CI/CD

I.B.Zarubin, A.D.Filinskikh

simarglz@yandex.ru | alexfil@yandex.ru
Nizhny Novgorod State Technical University n. a. R.Е. Alexeev

The article considers the forming a pool of regression tests when using the CI/CD process in the development of information systems

consisting of a significant number of interacting modules and using various database management systems. The reasons that do not
allow using standard filters of testing management systems to account for possible interactions between modules of the developed
information system are indicated. The method of selection of the tests to consider the interaction and potential mutual influence of
modules on each other, which also minimizes the pool of selected tests, and rank tests for significance from the point of view of a decision
on the correctness of the implementation of the functionality of the information system and the system's readiness for its transfer to the
customer. The method of dynamic selection of tests that allow to quickly evaluate changes made to the components of the information
system in terms of possible negative impact on the unaffected components and functionality is considered. The advantages and
disadvantages of the considered methodology, the necessary conditions for its successful application, and ways to implement it both in
new projects for the development of information systems and in existing projects in continuous development and without the possibility
of organizing code freezing are given.

Key words: regression testing, automated test cases selection, multicomponent information systems testing, quality assurance testing
without code freeze.

1. Introduction
High competition in the field of information systems

(IS) development [1] forces companies that develop IS to
reduce the development time and the number of employees
involved in the process of creating IS, while trying to avoid
reducing the quality of their product. Various software
development models are used to reduce development time,
such as Agile [2], Iterative model [3], V-model [4], and so
on. Almost all IS development companies use methods for
implementing the most popular Agile model at the
moment. It is necessary to note the growing popularity of
the methodology of "Extreme programming" (XP) [5] (one
of the implementations of the Agile process) - "continuous
integration/continuous delivery" (Continuous integration /
Continuous delivery – CI/CD) [6], which allows for
regular functional growth of the IS and its rapid updating.
This methodology is especially convenient for use in the
process of developing IS, which consist of several
components (micro-services) [7].

An attempt to reduce the number of employees
involved in the development of IS often results to reduce
the number of staff in the testing Department (QA) [8],
whose tasks, among other things, include checking the IS
for bugs and usability [9]. However, in terms of the impact
on the commercial success of IS, the role of testing is hard
to overestimate – it is unlikely that a potential user will
want to use a software product that is riddled with bugs
and uncomfortable to use.

There are many different test methods that can be
classified by the test object, the test subject, by the
positivity of the scenarios, the degree of isolation of the
tested component, the degree of automation, by the stage
of testing and so on [10]. One of the most important types
of testing that is used in almost every IS development
project is Regression testing (RT) [11] – a specific activity
of QA engineers aimed to detecting bugs in the modules
or functionality of the IS that have not been changed, but
could be affected by changes in related modules or
functionality. Regression can occur both in the interaction
between individual IS modules, and in the interaction

between two different IS when transmitting any
information [12].

Using the Agile development process in conjunction
with the CI/CD methodology in conditions of insufficient
resources for checking the quality of IS and extremely
tight development deadlines may lead to a lack of
sufficient time to run some extremely important types of
testing. RT is often neglected, since the correct selection
of the tests for this type of testing is quite complex and
requires a deep understanding of the system architecture,
and this type of testing reveals a small number (in absolute
numbers) of is errors. In the case of developing a multi-
component IS, the choice of scenarios for RT that would
check the possible negative consequences of changes is an
extremely difficult task. Unfortunately, very often the
criterion for selecting tests for RT is the" importance " of
the test or a failed test result during the previous RT – it is
very easy to select tests based on these criteria, but they do
not allow you to select the correct set of scenarios that can
effectively detect errors in the operation of IS modules or
functions that have not been modified.

The "code freeze" procedure is very important from the
point of view of detecting errors in IS [13]. During this
procedure, the IP code is not modified for some time – to
check the entire IS, rather than any part of it, to detect and
localize non-obvious bugs and bugs with complex
playback scenarios that affect several components of the
IS. It usually takes a significant amount of time to check
the entire IS – from a week to a month (depending, of
course, on the complexity of the IP and the number of test
engineers involved in testing process), and the set of RT
scenarios does not change. It is obvious that running a set
of tests in parallel with the modification of the is code will
lead to the loss of relevance of the test results after only
one or two changes have been made. In other words, the
results of tests performed at the beginning of a specific test
procedure refer to an already outdated version of the IS
and do not provide an answer about the quality of the
current IS configuration. In practice, the "code freeze"
procedure is often neglected during the IS development
process due to planning errors and a lack of understanding

mailto:simarglz@yandex.ru
mailto:alexfil@yandex.ru

of the need to perform all the necessary quality control
procedures before transferring the IS to the customer.

This situation in multicomponent systems is
complicated by the presence of a significant number of
paths and rules for interaction between components – in
such cases, it is very difficult to take into account all
possible influences on the information system in the
development process and, as a result, avoid negative
effects on components that are not directly affected by
code changes.

Based on above, there is an urgent need to develop a
methodology that would allow you to quickly create a list
of scenarios for RT, as well as take into account the
changes made to the IS components and an arbitrary
number of criteria for selection.

2. Methods for selecting scenarios for
regression testing using filters

In the context of continuous development of new
functionality and new components in complex
multicomponent IS, it is necessary to be able to select tests
that would show regression (bugs occurrence) in the
components of the system that have not been modified.
The selection of tests should be made in a short time and,
preferred, should not require special knowledge and a deep
understanding of the system`s architecture. For some
methods of selection, it is sufficient to filter tests using the
tools built into the test management system. For example,
it is possible to quickly select high-priority tests (for
example, one of the most popular test and defect
management systems - Jira) (Fig. 1).

Fig. 1. High priority test cases selection

In the same way, it is possible to select test cases which

are developed during a certain time period (Fig. 2) or test
cases developed to verify one of the components of a
multicomponent IS (Fig. 3).

Fig. 2. Creation period test cases selection

Fig. 3. Component test cases selection

Depending on the specifics of the project, it is possible

to select test cases using one of the following parameters:
˗ by success of the previous test run;
˗ by the number of bugs found during the test

execution;
˗ by priority of bugs found during the test execution;
˗ by duration of the test case;

˗ by the employee who completed the test;
˗ by test case developer;
˗ by finding the test in a specific test Suite;
and so on.

Obviously, it is possible to combine test selection
parameters during filtering and even determine the order
of these tests according to certain rules (Fig. 4).

Fig. 4. Developer, priority and component test cases selection

Selection by filters is very convenient, but it has some

very significant limitations:
1. It is not pfossible to select tests that would test

functionality that indirectly depends on changes made
to the IS, for example, cases of changing the format of
a message transmitted from one module of a
multicomponent system to another;

2. It is not Possible to organize the selection and ranking
of test cases based on the weight coefficients of
various selection methods;

3. It is not possible to quickly create a list of test cases
that would track changes in the system over a certain
period – sprint, week, or day.

3. Selection and ranking of test cases
depending on the degree of potential impact
of the changes

The IS development process is usually organized in
such a way as to reduce the time and other resources spent

on it. At the same time, there may be situations when
savings are made by escaping some important procedures
from the point of view of confirming the quality of IS. RT
is a complex and time-consuming procedure – that is why
in the process of developing complex multicomponent IS
in a tight time frame, regression testing is performed only
if resources are available and the selection of tests for RT
is carried out using extremely simplified methods – based
on the importance of the test or the results of the previous
RT. This approach has a high risk of losing the quality of
components that have not been explicitly changed and,
consequently, have not passed the standard checks that has
new or updated functions and modules. It is needed to
develop the method that would allow you to take tests that
would allow to consider the interaction of components and
modules would not require comprehensive knowledge of
the test IS and would use any number of methods of
selection of tests for RT.

As an example, let's consider a simplified scheme of a
multi-module information system (Fig. 5).

Fig. 5. IS components interactions scheme

Real-time data collection modules collect information

from third-party systems or databases and transmit the
collected information to the enrichment module. The
augmentation module supplements the received data with
additional information from the additional database
(which, in turn, is supplemented by a separate data
collection module) and transmits the enriched data to the
main database.

Data from the main database is processed by various
modules – for generating various types of reports, graphs
and diagrams, and performing various transformations of
data from the database. These modules can transmit
processed data to the notification module for further
conversion and transfer to the modules for sending data to
third-party systems.

The visualization module can receive various types of
information from all processing modules to display it to
users in real time.

Let's imagine the interaction of modules of the
presented is in the form of a graph [14] (Fig. 6).

Fig. 6. Graf form IS components interactions scheme

Thus, it is obvious that the changes made to the

calculation module (the vertex of graph 8) indirectly affect
modules 6, 10, and 14 (the main database, notification
module, and visualization module), and, accordingly, it
makes sense to check the correctness of these modules in
interaction with the updated module 8.

Moreover, it could not be exclude the indirect impact
of changes – not on the adjacent module, but on the
module that interacts with the adjacent module – changes
made to the calculation module 8 may disrupt the correct
operation of the sending modules 11, 12 and 13. At the
level of unit and integration tests-selection and even the
creation of the necessary test cases, can be done by
automated systems that analyze the source code, but the
selection of tests of high level, such as system and
regression test cases, that constitute the sequence of steps
in human language, is a very difficult task, which requires

very deep knowledge in system architecture and the
structure and content of the test scripts.

To solve this problem, it is suggested to entering
information about adjacent modules in the description of
the module verification test, changes in which may cause
the need to run this test. This allows to select not only all
the necessary tests for related modules, but also to check
the correct operation of modules that are not directly
affected by the change. Such effect can be secondary,
tertiary, and so on, depending on the degree of distance
from the module with the changes made. However,
considering all levels of relationships will lead to the
selection of all possible test cases, which clearly does not
make sense in the context of the RT selection task.

It is obvious that if there is filtering of incoming and
outgoing data from modules, the influence of changes
made in any module on adjacent modules is on average
more pronounced than the indirect influence of different
levels [15]. Thus, it is possible to rank the importance of
the RT of different modules (Fig.7).

Fig. 7. The level of influence of changes made on related

modules

Based on Fig. 7, it is obvious that it is necessary first
to perform RT on modules 6, 10 and 14, and second of all-
on modules 4, 7, 9, 11, 12, 13 etc.

When evaluating the possible impact of the changes on
adjacent modules, it is also necessary to consider that in
modern multi-module IS, not all interactions between
modules are two-way. Let's look at an example of such an
IS (Fig. 8).

Fig. 8. The level of impact of changes made on adjacent

modules, taking into account data flows

Based on the direction of data flows in Fig. 8, it is

obvious that changes in module 8 may affect only some of
the IP modules (highlighted in yellow and blue) –
therefore, the number of RT to assess the impact of
changes on adjacent modules will be significantly reduced.

For convenience in further research, we will introduce
a numerical measure of the significance of the regression
test of an adjacent component in terms of checking the
correctness of the is operation – the significance of the test
– ST. For simplicity of calculations, we assume that the ST
of modules that directly interact with the updated module
is equal to 100, tests of a module that interacts with the
updated module through one intermediate module will
have a ST of 50; through two modules - 25, and so on. In
this way, we can rank tests and perform first those tests
that are most likely to detect errors in the operation of IS
modules introduced by the update.

In the process of developing modern multi-module IS,
work on updating, correcting, refining the code is usually
performed on several modules at once. Let us consider the
situation of RT selection if two modules in the IS are
changed simultaneously (Fig. 9).

Fig. 9. Distribution of ST for changing two modules at the same

time

The total ST value for changing two modules
simultaneously is shown in fig. 10.

Fig. 10. The total value of the ST including changes to two

modules at the same time

It is obvious that the changes made to modules 8 and
10 have the greatest potential impact on module 14. A ST
value of 200 indicates the need to perform RT for module
14 with the highest priority. Next, you need to perform RT
for modules 11, 12 and 13 (ST 150), then for modules 10
and 6 (ST 100), and finally for modules 7 and 9 (ST 50).

Thus, using this method, it is possible to determine the
priorities of regression tests in a multi-module IS in a
situation when changes were made to several modules
simultaneously.

4. Selection and ranking of test scenarios
using an arbitrary number of selection
methods and the value of the ST

Currently, there are a significant number of methods
for assessing the degree of is regression [16], RT selection,
which are based on various principles for determining the

need to run the test. The use of multiple methods of
selection RT at the same time facilitates the identification
of RT, which are able to detect bugs in the IS. Let's look
at how to rank test scenarios selected using various
methods together, taking into account the degree of
potential impact of updated components. Let's assume that
high-priority tests are selected, tests that were performed
unsuccessfully in the previous RT, and tests that are able
to detect bugs made to the system by updating an adjacent
module.

 𝐼𝐼𝑎𝑎 = �(𝐼𝐼𝑝𝑝 + 𝐼𝐼𝑓𝑓 + 𝐼𝐼𝑐𝑐) (1)
where: Iа – sum of ST; Ip – ST by priority; If – ST by
success of the previous RT run; Ic – ST considering the
potential impact of updated related modules.

For an arbitrary number of selection methods (1) is
converted as follows:

 𝐼𝐼𝑎𝑎 = �(𝐼𝐼1 + 𝐼𝐼2 + ⋯+ 𝐼𝐼𝑛𝑛) (2)
where: Iа – sum of ST; I1 – ST of the test cases selected by
method 1; I2 – ST of the test cases selected by method 2;
In – ST of the test cases selected by method n.

Using (2), it is possible to get the significance of the
test in terms of the possibility of detecting errors in the IS
– the more importantly test case received higher value of
the ST. Thus, we get a test queue ranked by the priority of
test execution.

Separately, it should be noted that (2) is correct for the
ST values of each selection method in a certain general
range, for example, from 0 to 1 or from 0 to 100. If this
condition cannot be met for various reasons, it is suggested
to use additional rationing.

 𝐼𝐼𝑎𝑎 =
𝑤𝑤1 × 𝐼𝐼1 + 𝑤𝑤2 × 𝐼𝐼2 + ⋯+ 𝑤𝑤𝑛𝑛 × 𝐼𝐼𝑛𝑛

𝑤𝑤1 + 𝑤𝑤2 + ⋯+ 𝑤𝑤𝑛𝑛
 (3)

где: Iа – sum of ЗТ; w1 – weight coefficient for group of
the test cases 1; I1 – ST of the test cases selected by method
1; w2 – weight coefficient for group of the test cases 2; I2
– ST of the test cases selected by method 2; wn – weight
coefficient for group of the test cases n; In – ST of the test
cases selected by method n;

5. Using the method of calculating the total
significance of the test for the rapid creation
of a list of RT

In case of use the practice of continuous development
and issuance of new versions of IS modules (CI/CD), there
is an urgent need to take into account the changes made to
the IS when selecting tests as often as possible. The
method of selecting regression tests presented above
allows quickly select the most significant scenarios
without a deep dive into the specifics of IS. For example,
daily generating a list of tests for each tester that will
allows to validate and detect bugs in the IS, given as the
previous day's code changes, the results of the test
execution for a certain period, etc. and thus reduce the
negative impact of absence in the life cycle [17]
development is "code freeze».

This method can be integrated into test management
programs using the API and basic constructs of popular
programming languages (Fig. 11).

Fig. 11. Form for setting parameters and weights for selecting

regression tests
At the result of the calculating by application, we get a

list of Regression tests sorted by total ST (table 1).
Table 1. List of the regression test cases

Test case ID ST
SQM-1285 385
SQM-1452 385
SQM-1589 365
SQM-1698 365
SQM-1455 365
SQM-1889 265
SQM-2036 265
SQM-1845 245
SQM-1721 245
SQM-1805 225

Separately, it should be noted that the above method is

also suitable for determining the priority of running
automated module and integration tests when it is
necessary to select autotests to run, for example, in the
case of a high duration of test execution.

6. Conclusions
The presented method of selecting regression tests

based on the sum of significance of tests has the following
advantages:
1. Takes into account the potential impact of changes

made to related modules;
2. Takes into account any number of selection methods;
3. Allows rapid selection of tests for RT;
4. Can be integrated into test management frameworks;
5. Can be used in automated testing systems.

Acknowledgments
This work was completed and published with financial

support from the Russian Foundation for Basic Research,
grant 19-07-00926.

References
[1] Kuznetsov S.D. Great Russian encyclopedia.

Electronic resource:

https://bigenc.ru/technology_and_technique/text/344
4940.

[2] McHugh, Martin; McCaffery, Fergal; Coady, Garret
(4 November 2014). Mitasiunas, Antanas; Rout,
Terry; O'Connor, Rory V.; et al. (eds.). An Agile
Implementation within a Medical Device Software
Organization. Software Process Improvement and
Capability Determination. Communications in
Computer and Information Science. 477. pp. 190–
201. doi:10.1007/978-3-319-13036-1_17. ISBN 978-
3-319-13035-4.

[3] Larman C., Basili V.R. Iterative and Incremental
Development: A Brief History // Computer. - 2003. –
Vol.36, № 6. – P.47-56.

[4] Staroletov S. M. Fundamentals of software testing and
verification. Textbook. Publishing house «Lan» 2018
p. 344. (pp. 16-18). ISBN 978-5-8114-3041-3.

[5] Kent Back Extreme programming. SPb.: Publishing
house «Piter» 2017 p. 294 ISBN 978-5-496-02570-6.

[6] Pol M. Duval, Stiven M. Matias III, Andrey Glover.
Continuous Integration: Improving Software Quality
and Reducing Risk (The Addison-Wesley Signature
Series). - Wiliams, 2008. p. 240 - ISBN 978-5-8459-
1408-8.

[7] Balalaie, A.; Heydarnoori, A.; Jamshidi, P.
Microservices Architecture Enables DevOps:
Migration to a Cloud-Native Architecture (англ.) //
IEEE Software: journal. - 2016. - 1 May (vol. 33, no.
3). - P. 42-52. - ISSN 0740-7459. - DOI:
10.1109/MS.2016.64

[8] Glenford Myers, Tom Budget, Cory Sandler. The art
of software testing. Third edition. 2019. p. 272. (p. 20-
21) ISBN 978-5-907144-37-8

[9] Filinskikh A.D., Guliaeva U.I. Analysis of
opportunities for implementing cross-platform mobile
app development. JSON markup language.
KOGRAF-2019. Collection of materials of the 29th
all-Russian scientific and practical conference on
graphic information technologies and systems. 2019.
Publishing house: Nizhny Novgorod state technical
University named after R. E. Alekseev (Nizhny
Novgorod).

[10] R. Saving. Testing dom com or Пособие по
жестокому обращении с багами в интернет-
стартапах. 2017. p. 312. ISBN 978-5-4485-4551-1.

[11] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: A survey.
King`s College London - 2007. - c. 60.

[12] Filinskikh A.D., The information metric is the
transmission and recovery of geometric models in
professional software environments, thesis of
candidate of technical Sciences, 05.13.17 -
Theoretical foundations of computer science,
protected 26.12.13, approved 23.06.14 – Nizhny
Novgorod, 2013 – 180 p.

[13] Pete Goodliffe. chapter 22: The curious case of the
frozen code // Becoming a Better Programmer: A
Handbook for People Who Care About Code. -
"O'Reilly Media, Inc.", 2014-10-03. - С. 195 - 203. -
362 с. - ISBN 9781491905586.

https://bigenc.ru/technology_and_technique/text/3444940
https://bigenc.ru/technology_and_technique/text/3444940
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2F978-3-319-13036-1_17
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-319-13035-4
https://en.wikipedia.org/wiki/Special:BookSources/978-3-319-13035-4

[14] Volchenskaya T.V., Kniazkov V.S. Computer
mathematics: Part 2. Graph teothry / Textbook. Penza:
Publishong house of Penza university, 2002. 101 p.

[15] Lipaev V. V. Quality of the software. – М.: Finance
and statistics, 1983. – 263 p.

[16] Zarubin I.B., Filinskikh A.D. Method of estimation of
completeness of regression testing with normalization
by weight coefficients. // Т 78 Proceedings of the
NSTU named after R. E. Alekseev / NSTU named
after R. E. Alekseev. - Nizhny Novgorod, 2019. №4
(127). - 204 p. (9-17).

[17] National standard of the Russian Federation GOST R
56136-2014 life cycle Management of military
products. Terms and definitions. Reissue 11.2016 p.
20 (p. 5-6).

About the authors
Zarubin Ilia B. – senior lecturer Nizhny Novgorod State

Technical University n.a. R.E. Alekseev, e-mail:
simarglz@yandex.ru.

Filinskikh Aleksandr D., Ph.D. in Technology, Associate
Professor, Nizhny Novgorod State Technical University n.a. R.E.
Alekseev. E-mail: alexfil@yandex.ru

mailto:alexfil@yandex.ru

	1. Introduction
	2. Methods for selecting scenarios for regression testing using filters
	3. Selection and ranking of test cases depending on the degree of potential impact of the changes
	4. Selection and ranking of test scenarios using an arbitrary number of selection methods and the value of the ST
	5. Using the method of calculating the total significance of the test for the rapid creation of a list of RT
	6. Conclusions
	Acknowledgments
	References
	About the authors

