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The paper is devoted to comparison of a posteriori methods (based on the precomputed solutions) for approximation error 

estimation. Rigorous a posteriori error estimation for computational Fluid Dynamics at present is practically impossible due to 
nonlinearity and the discontinuities that may occur and migrate along the flow field. In this situation, several nonstrict (weak) forms of 
a posteriori estimation of the approximation error may be considered. They either do not provide the error norm estimation in the 
form of inequalities or provide values of the effectivity index to be less than unit. The best quality of estimates are provided by the 
Richardson extrapolation, unfortunately for the cost of extremely high computational burden. We pay the special attention to the 
nonstrict methods that either cannot be presented in a form of inequalities, or demonstrate the effectivity index of an estimator to be 
below unit. Several new, computationally inexpensive methods for both the point-wise error and the error norm estimation are 
considered. They are nonintrusive, realized by postprocessing and provide a successful compromise of the reliability and 
computational efforts. Methods based on the use of an ensemble of independent solutions can be implemented by constructing a 
generalized computational experiment, which sharply increases the speed and efficiency of the assessment. 
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1. Introduction 
The approximation error is omnipresent at the 

numerical solutions of Partial Differential Equations 
(PDE) due to the discretization at numerical statements. 
The error estimation is of the high current interest in view 
of the need for the verification of software and numerical 
solutions. For example, the corresponding issues are 
stated in Computational Fluid Dynamics (CFD) in the 
form of standards [1,2]. Let's discuss main approaches to 
the estimation of the approximation error. We consider a 
PDE system in the operator form  

fuA =~  (1)  
and corresponding discrete operator  

hhh fuA =  (2) 
that approximates the system on some grid.  

In further presentation we consider the numerical 
solution uh to be a grid function (vector uh∈RM, M is the 
number of grid points), M

h Ru ∈~  to be the projection of 

true solution onto the grid, hhh uuu ~~ −=∆  to be the true 
approximation error, ∆uh to be some estimate of this 
error. L2 - based norm is used for a comparison of these 
vectors. We may also use the set of numerical solutions 

Mi
h Ru ∈)(  obtained by independent numerical 

algorithms (i=1…K) is the number of used algorithm). 

iLh
i

h ruu =−
2

~)(  is the distance between true and 

approximate solutions.  
Two main options to the estimation of the 

approximation error exist.  
A priori error estimation  

nChu ≤∆  (3) 
is commonly used at the design and the theoretical 
analysis for the determination of the convergence order. 
Herein h is the step of discretization, n is the order of 
approximation, C is an unknown constant. This 
estimation is usually related to the truncation error 

(source term of differential approximation [3]) that may 
be formally expressed as 
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for PDE systems of the first order. This expression 
contains the infinite number of terms so, the first (minor 
order) term is commonly used. It may be computed by 
many ways including the special postprocessor [4]. 

A priori error estimates have an universal form. 
Unfortunately, the unknown constant prevents it from to 
be used in applications.  

A posteriori error estimator usually has the form  
)( huEu ≤∆  (5) 

and is determined by some computable error indicator 
E(uh). This estimator depends on the previously 
computed numerical solution uh and, thus, has a minor 
generality. Fortunately, it may be applied to practical 
computations since has no unknown constants.  

The highly efficient technique is developed for a 
posteriori error estimation in the domain of the finite-
element analysis [5,7,8]. In accordance with [5], the 
quality of a posteriori error estimation may be expressed 
via the effectivity index of estimator that is equal to the 
relation of the estimated error norm to the true error 
norm:  
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One may treat the norms of the true error and 
estimation error as the radii of hyperspheres 
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i
hest ur ∆= . Thus, the numerical 

solutions )(i
hu  are located at surfaces of concentric 

hyperspheres with the centre at hu~  and radii ri 

(unknown). The relation 1)( ≥i
effI  means that the 

hypersphere, containing the true error, belongs to the 
hypersphere defined by the estimator. So, in order to 



 

provide the reliable estimation, the effectivity index 
should be greater the unit. On the other hand, the 
estimation should be not too pessimistic, so the value of 
the effectivity index should be not too great. For the 
finite element methods, used in the domain of elliptic 
equations (usually engendering highly regular solutions), 
the acceptable range, according [5], is 31 )( ≤≤ i

effI . 
However, the boundaries of this inequality seem to be 
dependent on the problem at hand. Numerical tests for 
CFD domain demonstrate the efficiency index to belong 
the range (0.3,5). For the nonlinear problems containing 
discontinuities (that is common case for CFD) the 
progress of a posteriori error estimation in the rigorous 
form of inequality (5) is limited.  

As an alternative, some less rigourous methods are 
employed. These methods provide the estimation of ∆uh 
without any strict inequality. Significant number of 
estimators do not met the condition 1)( ≥i

effI .  
We note such error estimators as nonstrict (weak) 

ones.  
The first domain of these approaches forms the defect 

correction methods [9-11]. Some part of these methods 
[9,10] apply some approximation of the truncation error 
δuh in order to disturb the main system. The additional 
equation for the error transformation occurs 

hhhh uuA δ=∆)( . (7) 
These methods are rather laborious since imply 

coding, debugging and solving of an additional problem. 
A bit less laborious version of defect correction 

methods [11] have the appearance  

hh
refined
hhh fuuA δ+=)( , (8) 

that imply the disturbing of the main problem by the 
source term, which approximates the truncation error. 

Another branch of nonstrict a posteriori error 
estimation methods has a non-intrusive form of certain 
postprocessor that significantly reduces efforts for coding 
and debugging. It may be based on the Runge rule [5], 
Richardson extrapolation (RE) [13,14], Inverse Problem 
based approach (IP) [15] or ensemble based methods 
(EM) [16-19].  

The heuristic rule by C. Runge [5] is the basis of 
commonly used stopping criterion by merging of 
solutions at the mesh refinement.  

 The standards for verification and validation [1,2] 
recommend the Richardson extrapolation (RE) as the 
main tool for the verification. Richardson extrapolation 
provides the pointwise approximation of the error field, 
unfortunately, at the cost of the high computational 
burden [13,14]. RE provides some generalization of the 
Runge's rule.  

The Inverse Problem based approach (IP) [15] 
enables the pointwise information on the error. 

The computationally cheap approach to a posteriori 
error estimation that is based on the ensemble of 
numerical solutions obtained by independent methods is 
offered by [16-19]. However, these approaches do not 
provide the pointwise information on the approximation 
error.  

Thus, the computationally inexpensive nonstrict a 
posteriori estimation of approximation error is of the 
major interest in CFD from the viewpoint of verification 
of codes and solutions. The simultaneous use of several 
nonstrict methods may have some prospects from the 
viewpoint of reliability increasing. 

2. Runge rule 
From the historic viewpoint the first a posteriori error 

indicator is based on the heuristic rule by C. Runge [5]. If 
the difference between two approximate solutions 
computed on a coarse mesh uh and the refined mesh uh,ref 
is small, then both are assumed to be close to the exact 
solution. The Runge’s rule can be considered as the first 
a posteriori error indicator |ε(uh)- ε(uh,ref)|=ERunge(uh-
uh,ref) if one uses certain functional of the flow variables. 
It is the basis for the stopping criterion by merging of 
some functional at the mesh refinement. However, such 
relations do not guarantee convergence of the total 
solution or other valuable functionals. From a practical 
needs perspective one should desire the quantitative 
estimate of the form δ≤− uuh

~  with computable δ .  
The Runge's rule can be easily expanded to the 

Richardson extrapolation. 
The approximation error order that is observed in 

CFD applications assumes the discrete form  
....~ 321

321 +++=−=∆ jjj
hh hChChCuuu  (9) 

where j1, j2, j3, … are positive (sometimes noninteger) 
numbers ordered in accordance with the magnitude (for 
example, [12]). 

The accuracy for the error estimation by Runge's rule 
has the lowest order )( 1jhO  and remains unresolved. 

3. Richardson extrapolation 
Richardson extrapolation is based on the first term of 

expansion (9) n
q

q Chuu += ~)(  and operates if the 
asymptotic range is achieved for several grids hq (Ck, n 
are assumed to be constant that should be verified 
numerically by expanding the set of grids) [13,14]. For 
CFD problems containing shock waves and contact lines 
[12] the error order is not constant over the flowfield and 
depends on the type of flow structure. So, one should to 
extend RE for estimation of the local order of 
convergence.  

The pointwise (m is the grid point number) results of 
numerical computation for three meshes of different steps 
hq may be presented as: 

mn
kmm hCuu 1

)1( ~ +=  
mn

kmm hCuu 2
)2( ~ +=  (10) 

mn
kmm hCuu 3

)3( ~ += . 
This system is defined for the most rough grid and 

may be resolved regarding mmm nCu ,,~  by several 
methods described in [13, 14]. The relations (10) are 
valid, if Cm is independent on h and higher order terms 
may be neglected, that is, the solution is in the asymptotic 
range. This statement implies at least four consequently 



 

refined grids. If the asymptotic range is not confirmed on 
these grids, the additional refinement is necessary.  

So, the Richardson extrapolation provides the 
pointwise approximation for the error field at the cost of 
the high computational burden.  

The accuracy of RE for the error estimation has the 
appearance )( 2jhO  and remains unresolved 
quantitatively that excludes estimates by inequalities of 
the type (5). 

4. Approximation error estimation using 
Inverse Problems  

The nonstrict (weak) form of the approximation error 
estimation by the Richardson extrapolation uses the set of 
numerical solutions obtained by the same algorithm for 
consequently refined grids. On other hand, one may 
consider an ensemble of numerical solutions 

)(
,

)( ~ i
mmh

i
m uuu ∆+= , obtained by K independent 

algorithms (of different structure, for example, of 
different approximation order) on the same grid. The 
projection of an exact (unknown) solution on the grid 
point m is denoted as mhu ,

~ , the approximation error (also 

unknown) for i-th solution is denoted as )(i
mu∆ .  

The differences of solutions are equal to the 
differences of the approximation errors and, hence, 
contain some information regarding the unknown errors 

)(i
mu∆ : 
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We treat this information in accordance with the 

approach described by [15] in order to determine the 
approximation error )(i

mu∆ . One may obtain 

2/)1( −⋅= nnN  relations on the set of n  numerical 
solutions: 

mi
j

mij fuA ,
)( =∆ . (12) 

The summation over the repeating indexes is used 
elsewhere from this point. For the minimum set of data 
(three solution) equation (12) assumes the form 
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The solution of these equations is invariant relatively 
the transformation buu j

m
j

m +∆=∆ )()( ~  since it uses the 
difference of solutions. By this reason, the problem at 
hands is underdetermined and, consequently, ill-posed 
[20,21]. We pose the Inverse Problem (IP) with 
regularization in order to find a stable and bounded 
solution. The variational statement [21] with the zero 
order Tikhonov regularization term is used: 

)())(( )()(
,
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,

)( k
mjk

j
mmi

k
mikmi

j
mij uEufuAfuA ∆∆+−∆−∆= αε . (14) 

The first term is a discrepancy of the predictions and 
observations, the second term poses the zero order 
Tikhonov regularization, α is the regularization 

parameter, Ejk is the unite matrix. The regularization term 
has the form  

2/)~(2/)( 2)(2)( buu j
n

j

j
n

j
+∆=∆ ∑∑  (15) 

and ensures the boundedness of b. The minimum of (15) 
occurs at  

m
j

m

n

j
uu

n
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 (16) 

So, the minimum attainable error of ∆u(j) is restricted 
by the mean value: 

)(~1 j
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n

j
m u

n
u ∆=∆ ∑ . (17) 

5. Distance between solutions as the measure 
of the error 

As we mentioned before, the difference between 
solutions contains some information on errors. Herein, 
we consider the global (in sense of L2 norm for the grid 
functions) estimates of errors. 

If the relation 

22

)2()1( ~2~
LhhLhh uuuu −⋅≥−  (18) 

holds for numerical solutions u(1) and u(2), the following 
contention may be stated. 

The norm of approximate solution u(2) error is less 
than the norm of difference between solutions 

22
2,1

)2(~
LL

duuu ≤− . (19) 

This expression may be easily proved using the 
triangle inequality [16]. 

Unfortunately, the information on the errors ordering 
is not available as a rule. 

Fortunately, the additional analysis of distances 
between solutions may be useful in this situation. For this 
purpose we should expand the set of analyzed solutions 
above two. Let u(1) be the maximally inaccurate solution 
in the ensemble of K numerical solutions. We compare 
subsets of distances 

2
,1 Ljdu  and 

2
, Ljidu  )1( ≠i . If 

22

)()1( ~~
L

i
hhLhh uuuu −>>−  (the selected solution is 

especially inaccurate), the total set of distances between 
solutions splits into a subset specified by great values of 

2
,1 Ljdu  (distances from accurate solutions to 

inaccurate one) and a subset of distances between more 
accurate solutions )1(

2
, ≠idu

Lji . This situation may 

be found visually, if the distances between solutions are 
distributed along a line in accordance with their 
magnitude. In this situation u(1) may be easily found by 
the outliers. 

The maximum of the distance from zero to maximal 
value in the cluster 

2
, Ljidu  is assumed to be the upper 

bound of the cluster δ1 containing distances between 
“accurate” solutions. The minimum of 

2
,1 Ljdu  is 



 

assumed to be a down border of the cluster δ2 containing 
the distances between “accurate” solutions and most 
inaccurate one (u(1)). 

The separation of distances between solutions into 
clusters may be considered as evidence of the existence 
of solutions with significantly different error norms, that 
may be stated as the following rule: 

If the distance between the clusters is greater than the 
size of the cluster of accurate solutions 

112 δδδ >− , (20) 
then 

22
,1

)(~
LiL

i duuu ≤− . (21) 

We may use the differences between numerical 
solutions in different ways since the errors may be of the 
close magnitudes and the above analysis does not 
operate. Let's assume these errors ∆u(1), ∆u(2) to belong 
hyperspheres with the center at zero point. If the errors 
are orthogonal, the distance between numerical solutions 
(hypotenuse) is greater any leg 

h
kk uuuuud ~)()()2()1(

2,1 −=∆≥∆−∆=  (22) 

This relation resembles the famous "hypercircle 
method" [6], unfortunately in certain imprecise form.  

The error estimate (22) may be naturally extended on 
the ensemble of K solutions as follows: 

2
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max, L

k
k ud ∆≥  (23) 

),1(,max )()(
max, Kiuud ik

ik =−=  

The strict orthogonality of approximation errors is not 
observed in numerical tests [19]. However, the 
approximation errors are not collinear also. Numerical 
tests demonstrate the angles between the approximation 

errors 
)2()1(

)2()1( ),(arccos
uu

uu
∆⋅∆
∆∆

=α  to be in the range 

30°÷44°. The angles between the truncation errors β are 
observed in the range 58°÷64°. Practically all tests 
demonstrates α<β and the low boundary may be 
described as α(β)= β/3. We calculate the angle β using 
truncation errors δu(j) computed by postprocessor [4] and 
assume α(β)= β/3 that engenders the estimate: 
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)2/sin(
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6. The comparison of the error estimators  
The above considered error estimators are 

nonintrusive and are based on a postprocessor. We list 
and discuss the efficiency index (obtained for numerical 
solution of the compressible Euler equations [14-19], 
containing shock waves and contact discontinuities), the 
order of the unresolved error and computational expense 
for this estimators. 

Runges' rule 

Numerical tests demonstrate the efficiency index 
Ieff~0.1÷10. 

The norm of the unremovable part of the error for this 
approach has the asymptotics )( 1jhOe = . 

This approach uses several consequent grids 
(minimum two) and, so it is of the medium computational 
expense. 

Richardson extrapolation 

Numerical tests [14] demonstrate the Richardson 
extrapolation to enable the efficiency index Ieff≈1. 

The unremovable error is determined by the upper 
order terms neglected at asymptotic range 

)( 2jhOe = . 
This approach requires four (or greater number) 

consequent grids and is of the extremely high 
computational expense. 

Inverse Problem 

The efficiency index for IP based error estimation is 
in the range Ieff≈0.25÷4 for K from K=2 and K=13.  

The unremovable part of the error e is  

)(~1 j
m

n

j
m u

n
eu ∆==∆ ∑  

The norm of the unremovable part of the error for this 
approach has the asymptotics )( minjhOe = , where 

minj  is the minimal approximation error over the set of 
solutions. 

This approach requires three (or greater number) 
independent numerical solutions, obtained on the same 
grid, and demonstrates the low computational expense. 

Distances between solutions 

The distance between solutions may be used in 
several manners that applies the maximum distance 
between solution (diameter of ensemble), the angle 
between truncation errors, the analysis of the distances 
between solutions (the detection of the most imprecise 
solution). 

 Diameter of ensemble. 
Numerical tests [18] for the openFOAM package 

demonstrate that the distances between solutions may be 
used as the error estimators. For the ensemble of five 
solutions the results of [18] shows Ieff≈0.6÷4. Tests by 
[19] demonstrates the efficiency index to be in the range 
Ieff~0.04÷1.5 (K=2) and Ieff~1.1÷1.5, for K=13. 

Angle between truncation errors. 
The account of the angle between the truncation 

errors (24) enables the estimation that provides the 
effectivity index in the range Ieff~0.9÷4.52 [19].  

The norm of the unremovable part of the error for this 
approach has the asymptotics )( 1jhOe = . 

This approach requires two independent numerical 
solutions on the same grid and is of the low 
computational expense. 

Analysis of the distances between solutions. 



 

Numerical tests [16] demonstrate the efficiency index 
for the triangle inequality based estimation (Eqs. (19), 
(21)) is in the range Ieff≈0.75÷2.3. 

The norm of the unremovable part of the error for this 
approach has the asymptotics )( 1jhOe = . 

This approach requires three (or greater number) 
independent numerical solutions on the same grid and is 
of the low computational expense. Unfortunately, it 
operates only for algorithms having significantly 
different magnitudes of approximation error. This 
approach fails for certain sets of solutions ([18]). 

7. Conclusions 
Rigorous a posteriori error estimation for 

computational Fluid Dynamics at present is practically 
impossible due to nonlinearity and the discontinuities that 
may occur and migrate along the flow field. In this 
situation, several nonstrict (weak) forms of a posteriori 
estimation of the approximation error may be considered. 
They either do not provide the error norm estimation in 
the form of inequalities or provide values of the 
effectivity index to be less than unit. The best quality of 
estimates are provided by the Richardson extrapolation, 
unfortunately for the cost of extremely high 
computational burden. 

However, several new nonstrict forms of a posteriori 
estimation of the approximation error (based on the 
ensemble of methods) provide inexpensive estimation of 
the error norm. The Inverse Problem based error 
estimation provides the inexpensive estimation of the 
point-wise error. These approaches hold the greatest 
promise for the approximation error estimation. These 
estimators provides the effectivity index 53.0 )( ≤≤ i

effI  
that may be considered as the acceptable range of the for 
CFD applications. 
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