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The paper presents the results of a study of the possibility of implementing an effective and physically correct stochastic ray 
tracing in gradient media based on the Runge-Kutta method. For implementation in the photorealistic rendering system, the specifics 
of the ray tracing method in complex three-dimensional scenes were considered. One of the main features of ray tracing in 
geometrically complex scenes is the large volume of geometric primitives that need to be tested for the intersection of the ray segment 
with the primitives. A method of ray propagation in voxel space of the scene is proposed. The method allows significant speeding up 
the process of searching for ray intersections with geometry primitives.  To implement these ray tracing features the special program 
interface for gradient media was proposed, which can become the basic interface for a media of all types. Methods for calculating the 
luminance of all lighting components in gradient media were considered. The results of modeling the propagation of rays and image 
synthesis in a fiber with a refractive index gradient are presented.  
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1. Introduction 
The solution to the problem of realistic visualization 

of optically complex scenes and virtual prototyping of 
optical devices in a real environment is based on the 
construction of models of physically correct propagation 
of light radiation in an optically complex environment. 
Within the framework of constructing models for the 
interaction of light radiation with scene objects and 
optical devices included in this scene, two main models 
are distinguished: - firstly, the conversion of light 
radiation at the boundaries of objects and, secondly, the 
propagation of light radiation in the space between the 
boundaries of scene objects. 

Models of the conversion of light radiation at the 
boundaries of objects, for example, reflection and 
refraction of light at the boundary of dielectrics, 
scattering of light on the surface, described by a 
bidirectional scattering function, a change in polarization 
at the boundary of dielectrics, birefringence, etc., have 
gained a lot of attention in computer graphics and 
computational optics. Models of light propagation in a 
medium, as a rule, are limited by attenuation of light 
radiation and, in some cases, by modeling such effects as 
volume scattering and fluorescence. However, all these 
models are based on the assumption that the propagation 
of light is rectilinear or straightforward. Even modeling 
of such effects as volume scattering and fluorescence are 
also based on the assumption that the propagation of light 
is straightforward. The specificity of these models is that 
the straightness of light radiation is limited by extinction 
events that occur when a beam “hits” a scattering 
particle. In this case, the particles are not defined 
explicitly but are reduced to such parameters as the 
extinction cross-section, which determines the probability 
of the beam “being captured” by the scattering particle, 
and the phase function, which determines the character of 
the light scattering by the particle and plays the role of a 
bidirectional scattering function of the surface. As a 
result, the ray path in a scattering or fluorescent medium 
is a broken line, consisting of rectilinear segments. 

If the optical properties of the medium (refractive 
index) change continuously, then, following the Fermat 
principle, the ray path takes the form of a curved line 
having a minimum optical path from the start to 
endpoints of the path. The ray path is determined by the 
eikonal equation [1], for which, in general, there are 
numerical solutions [2, 3]. In computing optics, solutions 
are used to calculate the ray path in a gradient lens 
environment. However, the solutions used in 
computational optics are used for simple geometric 
shapes that bound the gradient lens and, in most cases, 
the laws of change in the refractive index are analytical 
functions that have simple solutions. 

The ray tracing methods used in computer graphics 
are fundamentally different from the methods of 
computational optics. The main difference is the number 
of geometric objects in the scene. If in computing optics 
the number of geometric primitives that limit the gradient 
medium is generally measured by units, then in computer 
graphics systems this number can reach tens of millions. 
Besides, in computer graphics systems, the gradient of 
the refractive index may not be an analytical function, but 
rather be an analog of a three-dimensional texture that 
varies the refractive index of the medium. These 
differences lead to significant changes in software 
interfaces and ray tracing algorithms. Also, computer 
graphics systems are not limited to ray tracing. Their task 
is to calculate the apparent luminance of the scene, and 
gradient media make it impossible to use standard 
algorithms for calculating the luminance components of 
direct, secondary and caustic illumination. 

In this paper, we consider methods of ray tracing in 
gradient media inside a complex geometric environment, 
methods for calculating the luminance components of 
direct, secondary, and caustic illumination and solutions 
for the unification of ray tracing methods in gradient 
media for computer graphics systems and computational 
optics. 

2. Materials and method 
In the approximation of geometric optics the law of 

light propagation in a gradient medium is derived from 
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the Maxwell equations: 

� 𝐸𝐸
(𝑟𝑟, 𝑡𝑡) = 𝐸𝐸(𝑟𝑟)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸0(𝑟𝑟)𝑒𝑒𝑖𝑖�∫ 𝑘𝑘(𝑟𝑟′)∙𝑟𝑟

𝑟𝑟0
𝑑𝑑𝑟𝑟′−𝑖𝑖𝑖𝑖� = 𝐸𝐸0(𝑟𝑟)𝑒𝑒𝑖𝑖𝑖𝑖(𝑟𝑟)

𝐻𝐻(𝑟𝑟, 𝑡𝑡) = 𝐻𝐻(𝑟𝑟)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐻𝐻0(𝑟𝑟)𝑒𝑒𝑖𝑖�∫ 𝑘𝑘(𝑟𝑟′)∙𝑟𝑟
𝑟𝑟0

𝑑𝑑𝑟𝑟′−𝑖𝑖𝑖𝑖� = 𝐻𝐻0(𝑟𝑟)𝑒𝑒𝑖𝑖𝑖𝑖(𝑟𝑟)
 (1) 

where 𝜓𝜓(𝑟𝑟) = ∫ 𝑘𝑘(𝑟𝑟′) ∙𝑟𝑟
𝑟𝑟0

𝑑𝑑𝑟𝑟′ represents the optical path 
or eikonal. 

Passing to the geometric approximation, the eikonal 
equation in vector form can be expressed as the 
following: 
 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑛𝑛(𝑟𝑟)

𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑
� = ∇𝑛𝑛(𝑟𝑟) (2) 

where 𝑛𝑛(𝑟𝑟) is the refraction index of the medium at the 
point 𝑟𝑟, and 𝑑𝑑(𝑟𝑟) = 𝑑𝑑𝑟𝑟

𝑑𝑑𝑑𝑑
 is the direction (unit vector) of the 

propagation of light energy. Fig. 1 shows the curved 
trajectory of the light ray and the vector of its direction at 
the point 𝑟𝑟. 

Obviously, in a homogeneous medium, the refraction 
index of the medium 𝑛𝑛(𝑟𝑟) does not depend on the space 
coordinate 𝑟𝑟 and thus 𝑑𝑑

2𝑟𝑟
𝑑𝑑𝑑𝑑2

= 0. As a result, the ray path 
turns into a straight line. 

 

 
Fig. 1. A path of ray in a gradient medium 

 
To implement ray tracing in a medium with a gradient 

of the refractive index, you can use the simplest solution, 
namely, imagine a gradient medium in the form of a set 
of layers with constant refractive indices inside each 
layer. In this case, the beam path will be a set of straight 
sections and a change in the direction of the beam path 
will occur at the boundaries of the layers. Fig. 2 (a) 
illustrates this approach. The main advantage of this 
approach is the simplicity of ray tracing. However, this 
approach has several drawbacks, firstly, with a rough 
splitting, an error in the formation of the ray path is 
possible, and with frequent splitting, it may slow down 
the tracing process, since the number of the ray path 
segments increases. Secondly, the process of constructing 
the boundaries of the medium for a given refractive index 
is not an easy task and can be quite easily solved only for 
“simple” media in which there are some symmetry and 
an analytical law of variation of the refractive index, for 
example, for gradient media with axial symmetry. 
Therefore, in most cases, another approach is used to 
form the ray path. 

To solve the differential equation (2), an approach 
based on the Runge-Kutta method is used. We introduce 
the following notation: 
 

⎩
⎪
⎨

⎪
⎧ 𝑡𝑡 =

𝑑𝑑𝑑𝑑
𝑛𝑛

𝑇𝑇�⃗ (𝑟𝑟) =  
𝑑𝑑𝑟𝑟
𝑑𝑑𝑡𝑡

= 𝑛𝑛(𝑟𝑟)𝑑𝑑(𝑟𝑟) = 𝑛𝑛(𝑟𝑟)
𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

 

𝐷𝐷��⃗ (𝑟𝑟) =  𝑛𝑛(𝑟𝑟)∇𝑛𝑛(𝑟𝑟)

 (3) 

where 𝑡𝑡 is the reduced parameter of the ray path, 𝑇𝑇�⃗ (𝑟𝑟) is 
the optical ray vector, 𝐷𝐷��⃗ (𝑟𝑟) is the parameter of variation 
of the refractive index. 

As a result, after substituting expressions (3) into 
equation (2), the eikonal equation is transformed to a 
first-order differential equation, which can be solved 
numerically by the Runge-Kutta method. 
 𝑑𝑑𝑇𝑇(𝑟𝑟)

𝑑𝑑𝑡𝑡
= 𝐷𝐷(𝑟𝑟) (4) 

To solve this equation, discretization is performed 
along with the curved segments 𝑡𝑡𝑖𝑖 of the ray path, where i 
varies from 0 to N. 

The initial parameters of the ray are known: 
(𝑟𝑟0, 𝑑𝑑0(𝑟𝑟0),𝜓𝜓(𝑟𝑟0)) and as a result of successive iterations, 
the parameters of the ray at the endpoint N can be 
calculated: (𝑟𝑟𝑁𝑁 , 𝑑𝑑𝑁𝑁(𝑟𝑟𝑁𝑁),𝜓𝜓(𝑟𝑟𝑁𝑁)). 

An algorithm for constructing a ray path can be 
represented as follows: 
(1) We specify a certain increment Δ𝑡𝑡 of the ray path, 

which can be selected based on considerations of 
variation of the refraction index in the region of the 
point 𝑟𝑟0 or proximity to the boundaries of the 
medium. 

(2) Following the Runge-Kutta method, the following 
parameters are calculated recursively, starting from 
point 𝑖𝑖 = 0: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐴𝐴 = Δ𝑡𝑡𝐷𝐷��⃗ (𝑟𝑟𝑖𝑖)

𝐵𝐵�⃗ = Δ𝑡𝑡𝐷𝐷��⃗ �𝑟𝑟𝑖𝑖 +
Δ𝑡𝑡
2
𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖) +

Δ𝑡𝑡
8
𝐴𝐴� 

𝐶𝐶 =  Δ𝑡𝑡𝐷𝐷��⃗ �𝑟𝑟𝑖𝑖 + Δ𝑡𝑡𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖) +
Δ𝑡𝑡
2
𝐵𝐵�⃗ �

 𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖+1) = 𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖) +
1
6
�𝐴𝐴 + 4𝐵𝐵�⃗ + 𝐶𝐶�

 (5) 

(3) Following the calculated parameters, the ray is 
transferred to the point i + 1 and at this point, its 
parameters are calculated: coordinates, energy 
propagation direction and eikonal: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + Δ𝑡𝑡 �𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖) +

1
6
�𝐴𝐴 + 2𝐵𝐵�⃗ ��

𝑑𝑑𝑖𝑖+1 =
𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖+1)
𝑛𝑛(𝑟𝑟𝑖𝑖+1) 

𝜓𝜓(𝑟𝑟𝑖𝑖+1) = 𝜓𝜓(𝑟𝑟𝑖𝑖+1) +
𝑘𝑘0Δ𝑡𝑡

2
[𝑥𝑥2(𝑟𝑟𝑖𝑖+1) + 𝑥𝑥2(𝑟𝑟𝑖𝑖)] −

 
𝑘𝑘0Δ𝑥𝑥2

6
�𝐷𝐷��⃗ (𝑟𝑟𝑖𝑖+1)𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖+1) − 𝐷𝐷��⃗ (𝑟𝑟𝑖𝑖)𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖)�

 

 (6) 

(4) The process is repeated until the ray reaches a given 
point.  

 
This algorithm provides high accuracy of ray transfer 

in a gradient medium, ensuring the continuity of its 
trajectory. Fig. 2 (b) illustrates the specifics of the ray 
tracing algorithm in a gradient medium. 



 

 

 
Fig. 2. Ray tracing methods in a gradient environment. (a) piecewise linear trajectory, (b) continuous trajectory 

 

3. Ray tracing algorithms 
The above approaches allow ray tracing in media with 

a refractive index gradient. However, these methods are 
suitable for unlimited environments. In reality, all media 
are limited and it is necessary to take into account the 
shape of the geometric objects that bound this medium. 
Two main types of constraints of the gradient medium 
can be distinguished. Firstly, these are simple optical 
elements, for example, gradient lenses [4-7]. The 
peculiarity of these objects is a small number of 
geometric shapes that limit this environment. As a rule, 
these are simple analytical objects, such as planes, 
cylinders, and spheres. Secondly, these are complex 
three-dimensional scenes that can form the limitation of a 
gradient medium consisting of millions of independent 
triangles. Naturally, the search algorithms for the 
intersection of the curved path of the beam with the 
boundary of the gradient medium will be specific for 
these two cases. 

In the first case, it is enough to implement an 
additional method for a geometric object, which will 
inform you on which side of the surface there is a point 
offset from the current position by a distance Δ𝑡𝑡. If the 
point remains in the gradient medium, then the ray 
tracing process (formulas (5) and (6)) continues. If the 
point leaves the gradient medium, then the iterative 
process of refinement of the search for the point of 
intersection of the ray with the boundary surface begins. 
Наиболее The simplest process is to search for the 
intersection of the straight segment of the ray formed 
either by the chord (𝑟𝑟𝑖𝑖+1 − 𝑟𝑟𝑖𝑖), or tangent to the ray path 
(𝑑𝑑𝑖𝑖). The obtained distance is converted into the 
parameter Δ𝑡𝑡 and the calculation of the new position of 
the point i+1 starts from point i. This process is repeated 
until the point i+1 approaches the surface so close that 
the last approximation can be replaced by a simple 
rectilinear segment of the ray path. As a rule, two or three 
iterations are enough to find the point of intersection of 
the beam with optical accuracy. 

In the second case, when ray tracing in a three-
dimensional scene containing millions of triangles, the 
situation is completely different. The main reason is the 
spatial partitioning of the scene. The ray is not traced 
directly from the surface to the surface. The beam 
propagates in a voxel space, which divides the medium 
into some volumes, usually in the form of a 
parallelepiped. These volumes may or may not contain 
elements of the boundary of the scattering medium. 
Before reaching the boundary of the medium, the ray 
must sequentially cross and process all the voxels located 
on its path. Therefore, in addition to the algorithm for 

searching for the intersection of a ray with geometry 
(which does not fundamentally differ from the algorithm 
considered in the first case), it is necessary to implement 
an algorithm for ray tracing in voxel space. Fig. 3 
illustrates the problem of ray tracing in a spatially 
partitioned gradient media. Geometric objects in the 
scene are tied to spatial voxels and, to accelerate the ray 
tracing process, the search for the point where the ray 
meets these objects is carried out only when the ray 
enters the corresponding voxel. The algorithm proposed 
for finding the point of intersection of the ray with the 
surface is not applicable for searching for the entry point 
to the voxel, since the voxel found after transferring the 
ray to the point 𝑟𝑟𝑖𝑖+1 may not be the next one. It may 
ultimately lead to the omission of a geometric object. The 
use of a chord or tangent segment of a ray can also lead 
to the problem of skipping a geometric object. Fig. 3 
illustrates this possibility. Therefore, to search for the 
next voxel and its entry point, it is necessary to find the 
point of intersection of the ray with the boundary of the 
current voxel. Since the voxel, as a rule, has the shape of 
a parallelepiped with planes parallel to the coordinate 
planes, the algorithm for finding the intersection point 
with its boundaries is greatly simplified: 
(1) We specify the starting point (𝑟𝑟0, 𝑑𝑑0(𝑟𝑟0)) and (based 

on the parameters of the gradient medium) the ray 
transfer parameter Δ𝑡𝑡. 

(2) Parameters 𝐴𝐴, 𝐵𝐵�⃗ ,𝐶𝐶,𝑇𝑇�⃗ (𝑟𝑟𝑖𝑖+1) are calculated by the 
formula (5), and then 𝑟𝑟𝑖𝑖+1 by formula (6). 

(3) If the point 𝑟𝑟𝑖𝑖+1 lies inside the voxel, then the ray 
transfer parameter Δ𝑡𝑡 is taken as the initial parameter 
to search for the point where the beam meets the 
geometric objects inside the voxel. 

(4) If the point 𝑟𝑟𝑖𝑖+1 is outside the voxel boundary, then 
an iterative approaching is made to the voxel 
boundary, the task of which is to find a point on the 
boundary and determine the beam transfer parameter 
to this point Δ𝑡𝑡. In this case, the point 𝑟𝑟𝑖𝑖+1 and the 
transfer parameter Δ𝑡𝑡 are chosen in such a way that 
the point turned out to be a small distance beyond 
the voxel border. However, if no intersection with 
the geometry inside the voxel was found, then to 
search for a new border inside the next voxel, the 
point and the transfer parameter return to a short 
distance inside the current voxel. 

(5) If an intersection with a geometric object inside the 
voxel was found, then the beam is converted at the 
boundary of the geometric object. And, if the beam 
remains in the gradient medium, the procedure for 
searching for the intersection of the beam with the 
boundary of the current voxel is repeated. 

 



 

To implement the ray tracing method in three-
dimensional scenes containing gradient media, a gradient 
media program interface was implemented, which 

provided the basic functionality necessary for ray tracing. 
The main methods of the environment interface should: 

 

 
Fig. 3. Ray tracing methods in a spatially split stage gradient medium 

 
(1) Determine the optimal beam transfer parameter from 

the point 𝑟𝑟𝑖𝑖 in the direction 𝑑𝑑𝑖𝑖(𝑟𝑟𝑖𝑖). If the medium 
does not have gradient properties, then the transport 
parameter is set to infinity and a direct ray tracing is 
realized. The beam transfer parameter can take into 
account the spatial partitioning properties of the 
scene and, if necessary, be calculated up to the 
border of the nearest voxel. 

(2) For the set 𝜆𝜆0, 𝜆𝜆1, 𝜆𝜆2, … 𝜆𝜆𝑀𝑀 of wavelengths determine 
the subset of wavelengths for which ray tracing 
along one path is possible, i.e. no dispersion. 

(3) Calculate the refraction index of the medium at the 
point 𝑟𝑟𝑖𝑖. 

(4) Calculate the gradient of the refraction index of the 
medium at the point 𝑟𝑟𝑖𝑖. 

(5) Осуществлять перенос луча из точки 𝑟𝑟𝑖𝑖 в току 
𝑟𝑟𝑖𝑖+1 и вычислять новое направление в конце 
трассы луча 𝑑𝑑𝑖𝑖+1(𝑟𝑟𝑖𝑖+1). 

(6) Calculate the optical path and geometric path of the 
ray from the point 𝑟𝑟𝑖𝑖 to the point 𝑟𝑟𝑖𝑖+1. 

(7) Calculate the absorption of the ray when it is 
transferred from the point 𝑟𝑟𝑖𝑖 to the point 𝑟𝑟𝑖𝑖+1. 

 
These interfaces are enough to implement ray tracing 

in gradient media of optical devices and three-
dimensional scenes. Besides, the implementation of these 
programming interfaces at a basic level will allow the 
implementation of ray tracing methods that will not 
depend on the properties of the environment in which 
they are distributed. This solution will greatly simplify 
the implementation of image synthesis methods and, in 
some cases, will avoid the need to impose additional 
conditions on the scene parameters in the rendering 
process. 

4. Luminance calculation algorithms 
The methods for calculating the luminance of the 

scene's scattering surfaces located in gradient media have 
their specifics. The visible luminance of the scene object 
is determined by the well-known formula [8]: 

𝐿𝐿(𝜆𝜆, 𝑟𝑟, �⃗�𝑣) = 𝜏𝜏(𝜆𝜆, 𝑡𝑡)
𝑛𝑛(𝜆𝜆, 𝑟𝑟)
𝑛𝑛′(𝜆𝜆, 𝑟𝑟) �

𝐿𝐿0(𝜆𝜆, 𝑟𝑟, �⃗�𝑣) + 
1
𝜋𝜋
� 𝐵𝐵𝐵𝐵𝐷𝐷𝐵𝐵(𝜆𝜆, 𝑟𝑟, �⃗�𝑣, �⃗�𝑣′)𝐿𝐿(𝜆𝜆, 𝑟𝑟, �⃗�𝑣′)�𝑁𝑁��⃗ ∙ �⃗�𝑣′�𝑑𝑑𝑑𝑑
4𝜋𝜋 � (7) 

where: 𝐿𝐿0(𝜆𝜆, 𝑟𝑟, �⃗�𝑣) is the own luminance of the observed 
object at a wavelength 𝜆𝜆, at a point 𝑟𝑟 and in the direction 
�⃗�𝑣, 𝜏𝜏(𝜆𝜆, 𝑡𝑡) – medium transmission at wavelength 𝜆𝜆 and on 
the path t from the luminance source to the observer, 
𝑛𝑛(𝜆𝜆, 𝑟𝑟) – index of refraction at the observer point, 
𝑛𝑛′(𝜆𝜆, 𝑟𝑟) – index of refraction at the point of formation of 
luminance, 𝐿𝐿(𝜆𝜆, 𝑟𝑟, �⃗�𝑣′) - the luminance of the light source 
illuminating the surface at a wavelength 𝜆𝜆, at a point 𝑟𝑟 in 
the direction �⃗�𝑣′, 𝑁𝑁��⃗  – the direction of the local normal to 
the surface at the point of illumination 𝑟𝑟, 
𝐵𝐵𝐵𝐵𝐷𝐷𝐵𝐵(𝜆𝜆, 𝑟𝑟, �⃗�𝑣, �⃗�𝑣′) - The bidirectional scattering 
distribution function of the surface (that is how many 
times the brightness of a surface under given lighting and 
observation conditions differs from the brightness of an 
ideal diffuser) at wavelength 𝜆𝜆, at a point 𝑟𝑟, in direction 
of illumination �⃗�𝑣′ and in the direction of observation �⃗�𝑣. 
The integration of luminance is carried out over the entire 
hemisphere of the illumination of the observation surface.  

For the computing method, the luminance can be 
represented as the sum of the four components visually 
presented in Fig. 4: 

(1) The luminance of direct vision is the intrinsic 
luminance of the surface that the observer sees 
directly or through a series of "mirror" surfaces. For 
surfaces in gradient media, this luminance 
component can be calculated directly, for example, 
by the ray tracing method. 

(2) The luminance of caustic illumination is the 
brightness of the surface that the observer sees 
directly or through a series of “mirror” surfaces 
illuminated through the “mirror” surfaces. To 
calculate this luminance component, the most 
suitable method would be a method based on the use 
of photon maps [9]. Caustic lighting maps are 
created by stochastic rays emitted from light sources, 
stored, and then “read” in accordance with equation 
(7) as the intrinsic luminance of the observed object. 
This approach is technically applicable for surfaces 
in gradient media, and requires only additional 
analysis of the ray hit the caustic map. 



 

 

 
Fig. 4. Four components of visible luminance 

 
(3) The luminance of direct illumination is the 

luminance of the surface that the observer sees 
directly or through a series of “mirror” surfaces 
directly illuminated by light sources. To calculate 
this brightness component, as a rule, the method of 
multiple importance sampling is used, weighting the 
brightness learned from the choice of points on the 
light source (light sampling - which allows you to 
calculate the luminance of direct illumination using 
radiometric ratios) and the choice of direction in the 
bidirectional scattering function (BDF sampling - 
allowing the method of calculating shadow rays to 
find the brightness of visible light sources) [10]. In 
most cases, the main contribution is made by the 
method of choosing points on the light source, 
however, this method cannot be applied to the case 
of surface illumination through gradient media 
(radiometric ratios do not allow calculating 
luminance efficiently and correctly). The method of 
choosing directions for the bidirectional scattering 
function has several serious limitations, for example, 
it cannot be applied to scenes containing small-sized 
light sources. Therefore, to calculate the brightness 
when illuminating a surface through a gradient 
medium, it is necessary to use the photon map 
method, which is technically implemented as a 
method for calculating the luminance of caustic 
illumination. If there are extended light sources of 
large size, weigh it with the method of selecting 
directions according to the bidirectional scattering 
function. 

(4) The luminance of the secondary illumination is the 
brightness of the surface that the observer sees 
directly or through a series of “mirror” surfaces 
illuminated by light scattered on the diffuse surfaces 
of the scene. To calculate this luminance component, 
forward ray tracing method, backward ray tracing 
methods, path tracing methods [11], or various 
options based on bi-directional ray tracing methods 
[12] are used. If the scene contains gradient media, 
then the use of ray tracing methods and methods of 
path tracing in most cases becomes ineffective. The 
main reason is the low probability that the rays hit 
the observer’s receiver (in forward ray tracing 
methods) or the light source (in backward ray tracing 

methods). The classical methods of bi-directional ray 
tracing can also be inefficient since they allow the 
possibility of connecting the paths of forward and 
backward rays through gradient media, which cannot 
be effectively implemented in the physically correct 
approximation of ray tracing. Therefore, the most 
suitable solution to the problem of calculating the 
brightness of secondary illumination is the method of 
bi-directional ray tracing using photon maps. From a 
practical point of view, this method is implemented 
similarly to the method for calculating the brightness 
of caustic illumination. The only difference is that 
photonic maps are formed at the second and further 
distant diffuse scattering events. 

 
The above solutions allow you to implement 

physically correct rendering of scenes containing gradient 
media. 

5. Results 
The ray tracing method and photorealistic rendering, 

based on the forward stochastic ray tracing method in 
scenes containing gradient media, was implemented as 
part of the Lumicept computer-based photorealistic 
image synthesis system [13]. Besides, a method for 
visualizing ray paths propagating in a medium with a 
refractive index gradient was implemented. 

As an example, a scene was constructed consisting of 
a cylindrical fiber with a refractive index varying from 
axis to edge (as shown in Fig. 5), a small-sized LED 
source illuminating the end of the fiber, and a radiation 
receiver which detects the component of caustic 
illumination on the opposite end of the fiber. As an 
alternative, a scene was built consisting of a series of 
cylinders in optical contact. The radius of the cylinder 
was determined from the condition that the refraction 
index changes by 0.005. Modeling was carried out at 
various parameters of the beam displacement. The 
number of steps varied from 20 to 100. The ray path 
remained practically unchanged and the synthesized 
image remained unchanged. The simulation results 
showed a match with the simulation results for the 
alternative scene. Images of several ray paths and the 
distribution of illumination behind the end of the fiber are 
shown in Fig. 5. 



 

 

 
Fig. 5. Variation of the refractive index from the center to the edge of the fiber, the beam path inside the fiber and the distribution 

of illumination behind the end of the fiber (from left to right) 
 

The coincidence of the simulation results obtained in 
various ways indirectly confirms the correctness of the 
chosen implementation of the ray tracing method. 

6. Conclusion 
In the framework of this study, an effective and 

physically correct method of ray tracing in gradient 
media was proposed. For implementation in the 
photorealistic rendering system, a gradient software 
interface was proposed, which can become the basic 
interface for all types of media. Methods were proposed 
for calculating the luminance of all lighting components 
in gradient media. 

The main tasks that are planned as part of the 
expansion of the proposed approach are, firstly, to 
determine the optimal parameter for beam movement in 
free space, which should provide a given accuracy of the 
position of the new point in space and the new direction 
of beam propagation, and, secondly, to develop an 
effective method for determining the parameter of ray 
tracing to the boundary of the spatial cell of the scene 
(voxel). 
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