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A Monte-Carlo ray tracing is nowadays standard approach for lighting simulation and generation of realistic images. A widely 
used method for noise reduction in Monte-Carlo ray tracing is combing different means of sampling, known as Multiple Importance 
Sampling (MIS). For bi-directional Monte-Carlo ray tracing with photon maps (BDPM) the join paths are obtained by merging 
camera and light sub-paths. Since several light paths are checked against the same camera path and vice versa, the join paths 
obtained are not statistically independent. Thus the noise in this method does not obey the laws which are correct in simple classic 
Monte-Carlo with independent samples. And, correspondingly, the MIS weights that minimize that noise must also be calculated 
differently. In this paper we calculate these weights for a simple model scene directly minimizing the noise of calculation. This is a 
pure direct numerical minimization that does not involve any doubtful hypothesis or approximations. We show that the weights 
obtained are qualitatively different from those calculated from classic “balance heuristic” for Monte-Carlo with independent samples. 
They depend on the scene distance, but not only on scattering properties of the surfaces and the distribution of light source emission. 
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1. Introduction 

A powerful method of solution of the rendering 
equations is Monte Carlo ray tracing (MCRT). It is 
widely used in calculation of the global illumination [1, 
2]. Its main problem is noise, and it strongly depends on 
the method of generation of random points. Therefore 
there were and are a lot of papers devoted to the optimal 
choice of the probability distribution of ray scattering 
[3–9]. One of the powerful approaches here is the so-
called Multiple Importance Sampling (MIS). Its idea is 
that we generate several random samples (rays) 
according to different “strategies” i.e. probability 
distributions and then sum with weights their 
contributions to image luminance. 

The mathematics behind that was produced in the 
famous thesis by E Veach [3] where the theorem was 
proved about several simple schemes of weight 
calculation. It was proved there that the resulting noise 
is close to its minimal value. This theorem applies to the 
classic MCRT method when successive random points 
are absolutely independent. 

Lighting simulation meanwhile frequently uses not 
that simple MCRT but more advanced methods like bi-
directional Monte-Carlo path tracing (BDPT), bi-
directional Monte-Carlo ray tracing with photon maps 
(BDPM) [2], their combination termed sometimes 
BDCM [8, 9] etc. Here the successive trajectories are 
not quite independent, for example, in the BDPM the 
same forward path is “merged” with all the backward 
paths. Therefore the resulting joined full trajectories 
have common ”tail” and thus are not independent.  

As a result, the noise in these methods follows other 
rules than in the simple or classic MCRT [6]. Therefore 
the weights that minimize this noise are likely different 
from those which minimize the noise functional in the 
classic MCRT. We shall prove it for the example of a 
very simple model scene. In this scene the noise level is 
dictated by geometric factors, but not by object optical 
properties in form of bi-directional distribution function 
(BDF), while the Veach formulae [3, 4] relate weights 
to the BDFs along the ray path. 

In this paper we calculate the optimal weights 
directly, i.e. find the minimum of the sample variance of 
the pixel value. This is performed for a simple model 
scene. We demonstrate that these weights depend on the 
geometry of the scene and on the number of light and 
camera rays per iteration, while the known MIS 
formulae from [3, 4] include only the BDFs and 
distribution of light source emission. 

2. BDPM and weights in it 
The basic idea of BDPM is that we trace several 

camera and several light rays. Then for each pair of 
light + camera paths, we try to merge them in a join 
trajectory that connects light and camera. If they do join 
we increment the accumulated luminance. Then the next 
pair is processed. After all light rays had been checked 
against all camera rays they all are discarded and new 
sets of rays are generated etc. Generation of the sets of 
rays and then cycling over all pairs constitute one 
iteration of the process. The luminance calculated in 
different iterations is statistically independent. 

So, an iteration which uses 𝑁𝑁𝐵𝐵 camera rays (through 
given pixel!!) and 𝑁𝑁𝐹𝐹 light rays (for all pixels!) 
increases accumulated luminance of a pixel by 
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where 𝐶𝐶𝑖𝑖,𝑗𝑗 is the contribution from the pair of 𝑖𝑖-th light 
and 𝑗𝑗-th camera rays. Similarly to it can be written as 
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where 𝑚𝑚 cycles over all camera path vertices and 𝑛𝑛 
cycles over all light path vertices, 𝐾𝐾 is the integration 
kernel and 𝑓𝑓is BDF in luminance units at the point �⃗�𝑥𝑚𝑚

(𝑐𝑐). 
Like in [3, 4], 𝑤𝑤𝑘𝑘,𝑚𝑚 is the weight for junction at the 𝑚𝑚-
th camera vertex when the join path of 𝑘𝑘 vertices (i.e. 
the light half of the join path has 𝑘𝑘 − 𝑚𝑚 vertices). It 
must be a function of that full path such that 
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Notice that in principle we have different sets of 
weights for joint paths of different total length 𝑘𝑘 (this is 
obvious because they are functions of 𝑘𝑘 arguments). 

3. Direct calculation of optimal weights 
It follows from (1) and (2) that the increment of the 

pixel luminance from one algorithm iteration is also 
linear in weights: it is a sum of weights times some 
random functions: 
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where 𝑖𝑖 enumerates light rays in one iteration, 𝑗𝑗 
enumerates camera rays (through this pixel) in one 
iteration and 𝜁𝜁 is the join path from them. 𝐶𝐶𝑘𝑘,𝑚𝑚(𝜁𝜁𝑖𝑖,𝑗𝑗) is 
the contribution from the this pair (𝑖𝑖, 𝑗𝑗) constrained to 
conditions 

1. The paths merge into join path 
2. They merge at the 𝑚𝑚-th camera vertex 
3. The join path has 𝑘𝑘 vertices 
If these conditions are not satisfied 𝐶𝐶𝑘𝑘,𝑚𝑚 vanish. This 

resolves ambiguity how to define the join path if the 
camera and light halves did not merge. 

The sets of join paths from different iterations are 
independent. So for this linear form the average over 
iterations (= the limiting luminance) is also linear in 
weights. The mean square of luminance value 
calculated in one iteration is a quadratic form in 
weights whose “coefficients” are averages that can be 
calculated in ray tracing. 

Therefore we can find those weights that minimize 
the variance of the pixel luminance, i.e. the noise. These 
are the optimal weights. Its direct calculation that does 
not include an approximations and hypothesis is 
regrettably very expensive numerically. So we shall 
perform it for a simple model scene, but even this 
example will give us some important conclusions. 

4. Simple model scene and calculations for it 

Scene layout 

To simplify our calculations we use a model scene 
where all join paths have the same (and small) length. It 
consists of 3 parallel planes with diffuse transparency; 
planes 1 and 3 have the Lambert BDF. BDF of the 
middle plane 2 is arbitrary and can be made very sharp 
(when direction of a transmitted ray is close to that of 
the incident ray). The planes are orthogonal to Oz and 
are positioned at 𝑧𝑧 = 0, 𝑧𝑧 = 𝛥𝛥2 and 𝑧𝑧 = 𝛥𝛥2 + 𝛥𝛥3 
respectively. Camera looks at plane 1 at normal 
direction. We consider a single pixel such that the 
camera ray hits plane 1 at (0, 0, 0) point. The rightmost 
plane 3 is illuminated by light source from right side, 
see Fig. 1. 

 
Fig. 1: The model scene 

 
The spatial distribution of illumination of plane 3 is 

𝐼𝐼(𝑥𝑥, 𝑦𝑦). Since transmittance is the Lambert the angular 
distribution of incident light is irrelevant. 

Join paths and weights 

This scene has no reflection and all paths connecting 
the camera and light source are qualitatively the same 

camera → �⃗�𝑥1 → �⃗�𝑥2 → �⃗�𝑥3 → light 

where �⃗�𝑥1 = 0�⃗  is fixed and the segment between lights 
source and plane 3 is ignored because does not affect 
the path contribution. Therefore the full path is 
completely described by its two variable vertices, �⃗�𝑥2 
and �⃗�𝑥3. 

The camera and light rays can meet at planes 1, 2 
and 3 whose contributions are taken with weights 
𝑤𝑤0(�⃗�𝑥2, �⃗�𝑥3), 𝑤𝑤1(�⃗�𝑥2, �⃗�𝑥3) and 𝑤𝑤2(�⃗�𝑥2, �⃗�𝑥3). Because of 
normalization 𝑤𝑤0 + 𝑤𝑤1 + 𝑤𝑤2 it suffices to calculate 𝑤𝑤0 
and 𝑤𝑤1. 

If camera and light ray meet at plane 𝑚𝑚, it is 
ambiguous whether �⃗�𝑥𝑚𝑚 is camera or light hit (they can 
differ by integration kernel radius). We choose camera 
hit then. 

Calculation of contribution 

Camera path is (�⃗�𝑥1
(𝑐𝑐), �⃗�𝑥2

(𝑐𝑐), �⃗�𝑥3
(𝑐𝑐)) and light path is 
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(𝑐𝑐) is the hit point of camera ray 
at the 𝑚𝑚-th plane, �⃗�𝑥𝑚𝑚

(𝑙𝑙) is the hit point of light ray at the 
𝑚𝑚-th plane (light ray goes from plane 3 to plane 2 then 
to plane 1), and �⃗�𝑥1

(𝑐𝑐) = 0�⃗  is fixed. As said above we do 
not consider the light ray before it hits the plane 3; just 
we start the ray by choosing the point �⃗�𝑥3

(𝑙𝑙)at random. 
The contribution of these two sub-paths is 
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where 𝑓𝑓1 = 𝑓𝑓2 = 𝜋𝜋−1 while 
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where 𝜗𝜗 is the angle between the incident and scattered 
rays, 𝛾𝛾 is the angle between the scattered ray and the 
normal and 𝛽𝛽 is the width. As to the integration kernel, 
we use the simplest one: 
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where 𝑅𝑅 is integration radius. It is small. 
Denoting the camera path as 𝜉𝜉 ≡ (�⃗�𝑥1

(𝑐𝑐), �⃗�𝑥2
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and light path as 𝜂𝜂 ≡ (�⃗�𝑥3
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where 
𝐶𝐶𝑚𝑚 ≡ 𝐸𝐸(𝑐𝑐)(�⃗�𝑥𝑚𝑚
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are independent from weights. Notice that usually in 
MCRT the ray energies can be calculated 
deterministically from the path. But even if they are 
random this does not affect our derivation, just 
𝐶𝐶𝑚𝑚becomes “more random”. 

Pixel luminance calculated during 𝑀𝑀 iterations, each 
of which uses 𝑁𝑁𝐹𝐹 light rays and 𝑁𝑁𝐵𝐵 camera rays, is 
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(3) 

The contribution from each iteration (3) is random 
variable and contributions from different iteration. 
Therefore the variance of calculated luminance is 

𝑉𝑉𝑉𝑉𝑉𝑉(𝛥𝛥) =
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𝑉𝑉𝑉𝑉𝑉𝑉(𝓒𝓒) = ⟨𝓒𝓒2⟩ − ⟨𝓒𝓒⟩2 
The averages are over the ray ensembles. They can 

be approximately estimated from the sum over 
iterations (the usual practice called sample mean and 
sample variance). 

Tabulated weights 

For numerical calculations let us subdivide the 
whole admissible area in (�⃗�𝑥2, �⃗�𝑥3) space in cells. The 
weight is constant 𝑤𝑤𝑚𝑚,𝛼𝛼  within cell. Since formally �⃗�𝑥2 
and �⃗�𝑥3 can be infinite we take some finite area and 
subdivide it in a usual way, unbounded space outside it 
constituting “the last cell”. Let 𝜒𝜒𝛼𝛼(�⃗�𝑥2, �⃗�𝑥3) be 1 inside 
the 𝛼𝛼-th cell and 0 outside it. Then the contribution 
from the 𝑠𝑠-th iteration (3) becomes 
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Combining the tables that relate to the weights 𝑤𝑤0 
and 𝑤𝑤1 into single array: 
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we can write 
𝓒𝓒𝑠𝑠 = ⟨𝐴𝐴𝑠𝑠|| 𝑊𝑊⟩ + 𝐵𝐵𝑠𝑠 

Then, since the values for different 𝑠𝑠 are 
independent the average value and the mean square are 

𝓒𝓒 = �𝐴𝐴�|𝑊𝑊⟩ + 𝐵𝐵 
𝓒𝓒2 = ⟨𝑊𝑊|𝐷𝐷|𝑊𝑊⟩ + 2�𝐹𝐹�|𝑊𝑊⟩ + 𝐵𝐵2 

where the overbar denotes the average, and 
𝐷𝐷 ≡ |𝐴𝐴⟩⟨𝐴𝐴| 
⟨𝐹𝐹| ≡ 𝐵𝐵⟨𝐴𝐴| 

The mathematical expectation of pixel luminance is 
the same for all weights, thus the limiting average 
�𝐴𝐴� = 0. But for a finite number of iterations, when 
convergence is incomplete, the sample average can be 
slightly depending on weights. Thus the sample average 
�𝐴𝐴� ≠ 0 and while calculating the sample variance over 
a finite number of iterations we must account for this 
dependence. This sample variance over 𝑀𝑀 iterations is 
thus 
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so the weights which minimize it satisfy 
�𝐷𝐷 − �𝐴𝐴��𝐴𝐴��|𝑊𝑊⟩ = −|𝐹𝐹⟩ + ⟨𝐵𝐵⟩�𝐴𝐴� 

which is just a system of simultaneous linear equations. 
However numerical experiments shown that the 

solution can be rather ragged. To improve the situation a 
regularization term can be added to the minimization 
equation which is a penalty for high gradients. 

5. Results 
We performed the calculations for the case when 

• plane positions 𝛥𝛥2 = 1, 𝛥𝛥3 = 3, 
• BDF of plane 2 has width 𝛽𝛽 = 3∘ 
• illumination density 𝐼𝐼 is 
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where 𝑉𝑉𝐿𝐿𝐿𝐿 = 20 is the radius of illuminated area and 
𝑉𝑉 = 0.02 is the “aperture” (radius) of its bright central 
part 
• integration radius 𝑅𝑅 = 0.003 
• the number of rays 𝑁𝑁𝐵𝐵 = 100, 𝑁𝑁𝐹𝐹 = 107 

The scene is axisymmetrical. Therefore all functions 
of (�⃗�𝑥2, �⃗�𝑥3) actually depend on 3, not 4 variables: 
(𝑉𝑉2, 𝑉𝑉3,𝜑𝜑) where 𝜑𝜑 is the angle between vectors �⃗�𝑥2 and 
�⃗�𝑥3 (notice that 𝜑𝜑 and 2𝜋𝜋 − 𝜑𝜑 give the same result!). 
BTW one can prove that the optimal weights are 
independent from 𝜑𝜑. 

As said above rays fill the area with 𝑉𝑉2 and 𝑉𝑉3 up to 
infinity. So we chose a finite area for each, now 0 ≤
𝑉𝑉2 ≤

1
2
, 0 ≤ 𝑉𝑉3 ≤ 0.05, subdivided it into equal cells and 

then added the last cell which completes to the whole 
infinite domain, e.g. 1

2
< 𝑉𝑉2 < ∞. 

Trial calculations were done for several numbers of 
cells. It happened that although the calculated weights 
differ, the noise level is nearly the same (as it is 
common for optimization). Since the weights are not 
needed per se, but only the noise reduction by them, we 
can use as small cells as enough to saturate the noise 
level. 



It happened that it was enough 1 cell in 𝜑𝜑 (i.e. 
weights actually do not depend on it!), 2 cells in 𝑉𝑉2 (0 ≤
𝑉𝑉2 ≤

1
2
 and 1

2
< 𝑉𝑉2 < ∞) and 26 cells in 𝑉𝑉3 (the first 25 of 

size 0.002 and the last 0.05 < 𝑉𝑉3 < ∞).  
The noise was calculated for the following cases. 

The calculation results are shown in Table 1:  
1. rays meet at plane 1 only 
2. rays meet at plane 2 only 
3. rays meet at plane 3 only 
4. rays meet at plane 3 only 
5. optimal weights are used 

Table 1. The calculation results 
case 𝒘𝒘𝟎𝟎 𝒘𝒘𝟏𝟏 𝒘𝒘𝟐𝟐 𝑳𝑳×105 RMS,% 

1 1 0 0 26.484 208% 
2 0 1 0 26.352 254% 
3 0 0 1 25.997 146% 

4 0 �1, 𝑉𝑉3 ≤ 𝑉𝑉
0, 𝑉𝑉3 > 𝑉𝑉 �0, 𝑉𝑉3 ≤ 𝑉𝑉

1, 𝑉𝑉3 > 𝑉𝑉 26.352 61% 

5 0 optimal 25.961 54% 
 
Optimal weights were calculated from statistic 

accumulated in 10000 iterations (Fig. 2). Optimization 
was constrained to 𝑤𝑤0 = 0. 

 
Fig. 2: The optimal weight 𝑤𝑤1 as a function of 𝑉𝑉2;  

𝑤𝑤2 = 1 − 𝑤𝑤1 ; 𝑤𝑤0 was constrained to 0 

6. Conclusions 
We see that even in case of a direct optimization 

(which gives the best result without false minima, 
approximations etc.) the gain is moderate; it is about 
3fold as compared to the best “fixed BDD” strategy. 
This is not bad because 3fold in noise is equivalent to a 
9fold increase of speed. 

At qualitative level we see that the optimal weights 
are not local i.e. we cannot calculate the weight (which 
is as we remember a function of the vertices of join 
path) from that path only. Indeed, in the above 
calculation illumination of the rightmost plane was 
3333 times lower for 𝑉𝑉3 > 𝑉𝑉. Let us compare it with the 
case of uniform illumination. In this case the optimal 
weight is very close to 𝑤𝑤2 = 1 (for all paths), so for a 
join path with |𝒙𝒙3| ≤ 𝑉𝑉 the optimal weight is different 
for the uniform and not uniform illumination. In other 
words, the weight for this path depends on illumination 
outside it. 

Surely the optimal weight is still a function of the 
join path but this function depends on the global scene 

characteristics. 
Meanwhile in the “balance heuristic” or “power 

heuristic” [3, 4] this function is known in advance. Very 
roughly, it calculates the weight from the ratio of BDF 
at junction point to the sum of BDFs at all the vertices 
of the join path. We therefore conclude that the 
balance/power heuristic, derived for the usual MCRT, is 
not truly optimal for BDPM because there the 
“samples” (join paths) are correlated because use the 
same light and/or camera path several times. 
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