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The article presents a new vision of the process of approximating the solution of differential equations based on the construction of 
geometric objects of multidimensional space incident to nodal points, called geometric interpolants, which have pre-defined 
differential characteristics corresponding to the original differential equation. The incidence condition for a geometric interpolant to 
nodal points is provided by a special way of constructing a tree of a geometric model obtained on the basis of the moving simplex 
method and using special arcs of algebraic curves obtained on the basis of Bernstein polynomials. A fundamental computational 
algorithm for solving differential equations based on geometric interpolants of multidimensional space is developed. It includes the 
choice and analytical description of the geometric interpolant, its coordinate-wise calculation and differentiation, the substitution of 
the values of the parameters of the nodal points and the solution of the system of linear algebraic equations. The proposed method is 
used as an example of solving the inhomogeneous heat equation with a linear Laplacian, for approximation of which a 16-point 2-
parameter interpolant is used. The accuracy of the approximation was estimated using scientific visualization by superimposing the 
obtained surface on the surface of the reference solution obtained on the basis of the variable separation method. As a result, an 
almost complete coincidence of the approximation solution with the reference one was established. 

Keywords: multidimensional approximation, multidimensional interpolation, geometric interpolant, heat equation, differential 
equations 

 

1. Introduction 
Traditionally, one of the possible results of the 

numerical solution of differential equations (DE) is a 
certain geometric model, the visualization of which 
allows you to visually evaluate the result. Thus, for most 
abstract solutions, there is a geometric interpretation. For 
example, the solution to an ordinary differential equation 
is a line, and the solution to the inhomogeneous heat 
equation of the rod is the surface compartment. Those, 
the result of solving the differential equation is a 
geometric object. Change the causal relationship to the 
inverse. Then it turns out that in order to solve the 
differential equation it is necessary to simulate some 
geometric object that has the required differential 
characteristics. A similar approach was implemented in 
[1, 2]. Of course, DE have a wide variety of varieties, and 
not for every differential equation there is an exact 
solution. Therefore, for the numerical solution of the 
differential equation it is enough that the required 
differential characteristics are provided at some discrete 
points (network nodes) that belong to the simulated 
geometric object. In this case, the intermediate values of 
the resulting solution will be determined using 
multidimensional interpolation. Then, to approximate the 
solution of the DE, it is convenient to immediately use 
one of the geometric interpolants. 

2. A bit about geometric interpolant 
A geometrical interpolant is a parameterized 

geometrical object passing through predetermined points, 
whose coordinates correspond to the initial experimental-
statistical information, or possessing the necessary, 
predetermined, properties. In accordance with the 
geometric theory of multidimensional interpolation [3-5], 
the geometric interpolant is formed by analytically 
describing the tree of the geometric model. 

So, for a one-dimensional geometric interpolant (1-
parameter interpolant) the tree of the geometric model is 
just one line (Fig. 1), passing through the predetermined 
points. 

 
Fig. 1. 1-parameter interpolant 

 
In the BN-calculus [6-8], such an interpolant can be 

represented as the following point equation of a one-
parameter set M of points: 
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where M – the current point of the arc of the curve of the 
line passing through the predetermined points; Mi – the 
starting points through which the arc of the curve should 
pass; pi(u) – function of the parameter u; u – is the 
current parameter, which varies from 0 to 1; n – the 
number of starting points of the arc of the curve line; i – 
serial number of the starting point. 

Moreover, the condition is that the one-parameter set 
belongs to the space of the selected dimension: 
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algebraic curves obtained on the basis of the Bernstein 
polynomial [9]. The fulfillment of this condition is 
mandatory for all subsequent interpolants and is not 
given in the article below, since it is calculated in a 
similar way. 

The point equation (1) is a symbolic notation. Having 
performed the coordinate-wise calculation for two-
dimensional space, we obtain a system of the same type 
parametric equations: 
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Similarly, any point equation for a space of any 
dimension can be represented as a system of parametric 
equations. Moreover, the presented system of parametric 
equations is an analytical description of the projections of 
the arc of a plane curve on the axis of the global 
coordinate system. 

A two-dimensional geometric interpolant represents a 
two-parameter set of points – the surface of 3-
dimensional space passing through predetermined 
(Fig. 2). 

 
Fig. 2. 2-parameter interpolant 

 
The computational algorithm for determining a 2-

parameter geometric interpolant can be represented as the 
following sequence of point equations, which include m  
of 1-parametric interpolants at the stage of tree formation 
of the geometric model (Fig. 2): 
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where qi(v) – function of the parameter v. 
To describe a 2-parameter interpolant (Fig. 2), a 3-

dimensional Cartesian coordinate system is used 
(although the proposed equations are also valid for an 
affine coordinate system). In addition, such a geometric 
interpolant can exist in a space of higher dimensions. In 
this case, the point equation will remain unchanged, but 
when performing the coordinate-wise calculation of the 
parametric equations of the system, there will be more, 
and their number will directly depend on the dimension 
of the space in which the simulated geometric object is 
located. 

Similarly, a three-parameter interpolant is defined by 
a 3-parameter set of points – a hypersurface of 4-

dimensional space passing through predetermined points 
(Fig. 3). 

 
Fig. 3. 3-parameter interpolant 

 
The computational algorithm for determining the 3-

parameter interpolant will include m  of 2-parametric 
interpolants forming an even more extended tree of the 
geometric model (Fig. 3): 
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where ri(w) – function of the parameter w. 
Summarizing this approach, we can obtain a 

geometric interpolant of n dimension corresponding to n-
parameter set of points or hypersurfaces (n+1)-th space 
passing through the predetermined points. At the same 
time, the belonging of the nodal interpolation points to 
the simulated geometric interpolant is ensured by the 
passage of all points through the guide lines (one-
dimensional interpolants) at each stage of the formation 
of the model tree: Fig. 1→ Fig. 2→ Fig. 3. 

It should be noted that the geometric theory of 
multidimensional interpolation was developed and is 
effectively used to model and optimize multifactor 
processes and phenomena based on any experimental 
statistical information [10-12]. However, in the context of 
the above studies, it is used for a different purpose, 
namely, for solving DE. 

To solve the equations of mathematical physics [13], 
the choice of a geometric interpolant depends primarily 
on the dimension of the Laplacian. So, for the numerical 
solution of the inhomogeneous heat equation with linear 
Laplacian ∂2U/∂x2 served as a two-parameter interpolant 
U=f(x,t) [2]. Then with a flat Laplacian ∂2U/∂x2 + ∂2U/∂y2 
the use of a three-parameter interpolant is necessary 
U=f(x,y,t), and with spatial ∂2U/∂x2 + ∂2U/∂y2 + ∂2U/∂z2 - 
four-parameter interpolant U=f(x,y,z,t). 

3. Analytical description of geometric 
interpolants 

For the analytical description of geometric 
interpolants, the point equations of algebraic curves arcs 
passing through the predetermined points obtained on the 
basis of Bernstein polynomials [9] are used. The need to 
determine such curves lies in the fact that when modeling 
multi-factor processes for each separate problem, it is 
necessary to solve systems of linear algebraic equations 



 

(SLAE) in determining the desired equation. To obtain a 
universal approach to modeling multifactor processes [3-
5], it was necessary to obtain such equations of arcs of 
algebraic curves into which you can substitute any values 
of the points coordinates (both fixed and variable), and 
immediately obtain the desired result. For this, the SLAE 
solution process was laid down directly at the stage of 
curve modeling. As a result, we obtained the point 
equations of algebraic curves arcs passing through 
predetermined points, which are the main tool of the 
geometric theory of multidimensional interpolation and 
approximation. 

It should be noted a very important distinguishing 
feature of the obtained equations. For point equations, the 
belonging of a geometric object to a space of a specific 
dimension is determined by the sum of functions of a 
parameter (condition to equation (1)), which must be 
equal to 1. The using of Bernstein polynomials made it 
possible to ensure that this condition is met regardless of 
the dimension of the space of the global coordinate 
system. The functions of the parameter are determined by 
the Newton binomial, which is expanded for the 
parameter and its complement to 1. By this, it provides 
the condition that the arc of the curve belongs to a 
specific space, regardless of its dimension. In other 
words, the obtained parametric equations of the arc of the 
curve can be used for a space of any dimension and, 

accordingly, for solving differential equations with a 
Laplacian of any dimension 

Another important feature of the obtained equations 
of the curve arc is the uniform distribution of the 
parameter values, which was originally laid down in the 
method for determining the curve arc passing through 
predetermined points. Moreover, for each specific 
coordinate axis having a uniform distribution of the 
coordinates of the source points, a linear relationship 
between the natural value of the factor belonging to the 
projection axis and the current parameter is valid. This 
significantly reduces the amount of necessary 
calculations when approximating the solution of the 
differential equation, allowing us to consider them on a 
regular multidimensional network of points. Moreover, 
the method is universal in nature and without making any 
changes, it can be fully used for both regular and 
irregular network of points. 

In this way, point equations of arcs of curves of 2–10 
order, passing through 3–11 points, respectively, were 
obtained. For example: 
1. The point equation of an arc of a curve of the 2nd 

order passing through 3 predetermined points: 
( ) ( )1 2 31 2 4 2 1 ,M M u u uuM M u u= − + + −  (4) 

where 1u u= −  - parameter addition u  to 1. 
2. The point equation of an arc of a third-order curve 

passing through 4 predetermined points: 
( ) ( ) ( ) ( )3 2 2 2 2 2 2 2 2 3

1 2 3 42,5 9 4,5 4,5 9 2,5 .M M u u u uu M u u uu M u u uu M u u uu u= − + + − + − + + − +  (5) 

4. General approach to the approximation of 
the solution of differential equations 

The main idea of the proposed approximation method 
is that at the nodes of the selected interpolation network 
of points the condition of the original differential 
equation is satisfied. For its implementation, the 
following fundamental computational algorithm was 
formed: 
1. Depending on the source differential equation, form 

a network of points of the required dimension and 
density, which will be the basis for creating the tree 
of the geometric model. 

2. Select arcs of approximating curves for an analytical 
description of a geometric interpolant, thereby 
forming a computational sub algorithm. 

3. Perform coordinate-wise calculation and, in the case 
of using a regular network of points, go from the 
parametric equations system of the geometric 
interpolant analytical description to its equation in an 
explicit form. 

4. Enter the coordinates of the points corresponding to 
the initial and boundary conditions. 

5. To differentiate the obtained equations and substitute 
them in the original DE. 

6. Substitute parameter values at the nodal points, 
thereby forming a local system of linear algebraic 
equations (SLAE). 

7. In the case of using piecewise approximation, we 
repeat the first 6 points of the computational 
algorithm several times, thus accumulating local 
SLAEs to form a global SLAE. 

8. We solve the obtained SLAE and determine the 
necessary values at the nodal points of the 
interpolant. After that, we substitute the result of 
calculations in the approximation equation from the 
5th point. 

9. We analyze the result and check its reliability. In the 
case of insufficiently accurate results, we increase 
the number of nodal points of the geometric 
interpolant. 

Of course, each engineering task is separate in nature 
and has its own characteristics, but this will not affect the 
fundamental approach to solving differential equation. 
For example, with a large number of nodal points, it is 
possible to use composite approximating curves that will 
form composite geometric objects in multidimensional 
space. If necessary, they can be docked with the required 
smoothness order [14-19]. And with an increase in the 
order of the differential equation, an increase in the order 
of the approximating curve is necessary. Moreover, in 
order to obtain the correct result of solving the 
differential equation, it is necessary that the order of the 
approximating curve be greater than the order of the 
original differential equation. 

It should be noted that the result of the 
implementation of the proposed computational algorithm 
will be a general control solution. It can have an infinite 
number of particular solutions. A specific solution is 
distinguished from a variety of particular solutions using 
initial and boundary conditions, which, unlike most 
methods for solving differential equation, must be laid 
down in the form of input data at the stage of creation 
and analytical description of the geometric interpolant, 
thereby forming point 4 of the computational algorithm. 



 

In other words, the geometric display of the initial and 
boundary conditions are also some geometric objects: 
points, lines, surfaces, etc. Thus, the desired geometric 
interpolant must be a carrier of geometric objects 
corresponding to the initial and boundary conditions. 

5. An example of approximation of the solution 
of the heat equation using a two-parameter 
interpolant 

Consider the use of the proposed method on the 
example of solving the following inhomogeneous heat 
equation: 
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To approximate the solution of equation (6), we use a 
16-point 2-parameter interpolant [2]. Using the point 
equation of the arc of a third-order curve passing through 
4 predetermined points, we obtain the following 
computational algorithm for determining a 16-point 2-
parameter interpolant, which is determined using the 
point equation (5) by the following sequence of point 
equations: 
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where 1u u= −  and 1v v= − . 

Perform coordinate-wise calculation of the sequence 
of equations (7) for 3-dimensional space. To do this, we 
adopt a Cartesian coordinate system with axes: x, t, and 

U. Thus, the number of equations in the sequence (7) will 
triple. Given the special properties of arcs of algebraic 
curves obtained on the basis of Bernstein polynomials 
and described above, we obtain: 
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Using the linear dependence of the first two equations 

of system (8), we pass to the explicit equation of the 
approximating 2-parameter interpolant. 

Further, to ensure the initial and boundary conditions, 
it is necessary that the obtained geometric interpolant 
passes through 3 straight lines: U(0,t)=1, U(1,t)=2 and 
U(x,0)=x+1. To ensure these conditions, it suffices to 

indicate the corresponding coordinates of the points along 
the axis U: UM1111=UM1112=UM1113=UM1114=1,  

Thus, it remains to determine the values of the 
geometric interpolant at 6 points: M1122, M1123, M1124, 
M1132, M1133 and M1134 that correspond to the following 
values of the parameters of the nodal points of the 
interpolant:  
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As a result, we obtain a SLAE of 6 equations with 6 
unknowns: U1122, U1123, U1124, U1132, U1133 and U1134. 
Solving this SLAE and substituting the obtained values in 
the equation of an approximating two-parameter 
interpolant, taking into account the rounding of the 
coefficients of the equation, we obtain: 
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Having checked the result obtained by comparing the 
obtained solution with the solution obtained on the basis 
of the variable separation method: 
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For a visual comparison of the obtained results, we 
will visualize the obtained surfaces and superimpose 

them on each other (Fig. 4). In this case, the green 
solution shows the reference solution obtained by the 
method of separation of variables. 

 
Fig. 4. Comparison of the results of solving the inhomogeneous heat equation 

 
As can be seen from Figure 4, with the help of the 16-

point geometric interpolant, it was possible to achieve an 
almost complete degree of coincidence with the reference 
solution. Moreover, further use of the obtained 
polynomial equation for engineering calculations is more 
preferable in comparison with the equation obtained by 
the method of separation of variables. It should be noted 
that, if necessary, the number of nodal points of the 
approximating network can be practically any and can 
always be increased to achieve the required accuracy of 
the solution. 

6. A generalization of the proposed solution of 
the inhomogeneous heat equation to a 
multidimensional space 

Let us consider a generalization of the proposed 
solution of the inhomogeneous heat equation for a 

higher-dimensional Laplacian. In this case, the 
computational algorithm does not have fundamental 
differences. Only increases the dimension of the 
geometric interpolant and the number of equations of 
coordinate calculation. Based on this, we consider not a 
particular, but a general solution of the heat equation, 
given in a general form for a three-dimensional 
Laplacian: 
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As a geometric interpolant, we choose a 4-parameter 
hypersurface belonging to a 5-dimensional space. As an 
example, let us take a curve of the third order passing 
through 4 forward given points (5) as an approximating 
arc. Then the computational algorithm for determining 
the 4-parameter interpolant takes the following form: 
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where 1w w= −  and 1ϕ ϕ= − . 

It should be noted that the sequence (10) did not 
include 16 2-parameter interpolants Mij, which also must 
be determined by analogy with the sequence (7). Thus, 
the desired geometric interpolant will pass through 256 
nodal points. Accordingly, for the inhomogeneous heat 

equation with a flat Laplacian ∂2U/∂x2 + ∂2U/∂y2 the 
number of nodal points will be 64. 

We perform the coordinate-wise calculation of the 
sequence of equations (10) for a 5-dimensional space. To 
do this, we adopt a Cartesian coordinate system with 
axes: x, y, z, t and U. Given the special properties of the 



 

arcs of algebraic curves obtained on the basis of Bernstein polynomials and described above, we obtain: 
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where ax, ay, az, at, bx, by, bz, bt – parameters that are 
determined depending on the initial and boundary 
conditions for solving the differential equation. 

Further, taking into account the linear dependence of 
the first 4 equations of system (11), we proceed to the 
equation given explicitly U=f(x,y,z,t). We differentiate it 
in accordance with equation (9) and, substituting the 
parameter values at the nodal points of the interpolant 
one by one, we compose a SLAE, solving which we 
obtain the desired numerical solution of the 
inhomogeneous heat equation. 

Similarly, other arcs of curves passing through 
forward given points of a higher order or obtained in 
some other way can be used to approximate the solution 
of the differential equations. It is also possible to create 
mixed geometric interpolants, including arcs of curves of 
various orders. Thus, the number of nodal points can be 
any at each separate stage of the formation of the 
geometric interpolant and depends primarily on the initial 
and boundary conditions of the differential equation. 

7. Conclusion 
A method for the numerical solution of differential 

equations using a geometric interpolant is proposed. 
Moreover, it can easily be generalized to 
multidimensional space and therefore can be used to 
solve differential equations with a large number of 
variables, by analogy with the geometric modeling [20-
21] of multifactor processes and phenomena [3-5]. The 
proposed method is considered as an example of solving 
the inhomogeneous heat equation using a 16-point two-
parameter interpolant. In this case, a generalization of the 
proposed solution of the heat equation to 
multidimensional space is made. In a similar way, the 
number of nodal points of a geometric interpolant can be 
increased, which allows you to geometrically simulate 
the solution of differential equations with any 
predetermined accuracy. For this, not only arcs of curves 
passing through predetermined points can be used, but 
also contours of the required smoothness order. Also, the 
proposed approximation method can be effectively 
generalized not only in the direction of increasing the 
dimensionality of space, but also in the direction of 
increasing the order of the initial differential equation, 
which is the prospect of further research. 

The geometric theory of multidimensional 
interpolation can also be used to solve other engineering 
problems of modeling and visualization multi-factor 
processes and phenomena [20-30]. 
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